【題目】如圖,在四邊形ABCD中,AB=AC,BC=BD,若,則______.(用含的代數(shù)式).
【答案】
【解析】
延長DA到E點(diǎn),使AE=AC,連接BE,易證∠EAB=∠BAC,可得△AEB≌△ABC,則∠E=∠ACB= ,BE=BC=BD,則∠BDE=∠E= ,可證∠DBC=∠DAC=4-180°,即可求得∠BCD的度數(shù).
延長DA到E點(diǎn),使AE=AC,連接BE
∵AB=AC,
∴∠ACB =∠ABC = ,∠BAD=2
∴∠BAC =180°-2,∠EAB=180°-2
又AB=AB
∴△AEB≌△ABC(SAS)
∴∠E=∠ACB=,BE=BC=BD
∴∠BDE=∠E=
∴∠DBC=∠DAC=∠BAD-∠BAC=2-(180°-2)= 4-180°
∴∠BCD=
故答案為:
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠B=90,∠C=30°,AB=6cm,BC=6cm,動點(diǎn)P從點(diǎn)B開始沿邊BA、AC向點(diǎn)C以3cm/s的速度移動,動點(diǎn)Q從點(diǎn)B開始沿邊BC向點(diǎn)C以cm/s的速度移動,動點(diǎn)P、Q同時(shí)出發(fā),到點(diǎn)C運(yùn)動結(jié)束.設(shè)運(yùn)動過程中△BPQ的面積為y(cm2),運(yùn)動時(shí)間為t(s).
(1)點(diǎn)P運(yùn)動到點(diǎn)A,t= (s);
(2)請你用含t的式子表示y.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)的圖像為直線.
(1)若直線與正比例函數(shù)的圖像平行,且過點(diǎn)(0,2),求直線的函數(shù)表達(dá)式;
(2)若直線過點(diǎn)(3,0),且與兩坐標(biāo)軸圍成的三角形面積等于3,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了測量被池塘隔開的、兩點(diǎn)之間的距離,根據(jù)實(shí)際情況,作出如圖所示的圖形,其中,,交于,在上.有四位同學(xué)分別測量出以下四組數(shù)據(jù):①,; ②,,;③,,;④,,.根據(jù)所測數(shù)據(jù),能出,間距離的有________(填上所有能求出、間距離的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】位于南岸區(qū)黃桷埡的文峰塔,有著“平安寶塔”之稱.某校數(shù)學(xué)社團(tuán)對其高度 AB進(jìn)行了測量.如圖,他們從塔底A的點(diǎn)B出發(fā),沿水平方向行走了13米,到達(dá)點(diǎn)C,然后沿斜坡CD繼續(xù)前進(jìn)到達(dá)點(diǎn)D處,已知DC=BC.在點(diǎn)D處用測角儀測得塔頂A的仰角為42°(點(diǎn)A,B,C,D,E在同一平面內(nèi)).其中測角儀及其支架DE高度約為0.5米,斜坡CD的坡度(或坡比)i=1:2.4,那么文峰塔的高度AB約為( )(sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)
A. 22.5 米 B. 24.0 米 C. 28.0 米 D. 33.3 米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),一架云梯AB斜靠在一豎直的墻上,云梯的頂端A距地面15米,梯子的長度比梯子底端B離墻的距離大5米.
(1)這個(gè)云梯的底端B離墻多遠(yuǎn)?
(2)如圖(2),如果梯子的頂端下滑了8m(AC的長),那么梯子的底部在水平方向右滑動了多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線F:y=x2+bx+c的圖象經(jīng)過坐標(biāo)原點(diǎn)O,且與x軸另一交點(diǎn)為(﹣,0).
(1)求拋物線F的解析式;
(2)如圖1,直線l:y=x+m(m>0)與拋物線F相交于點(diǎn)A(x1,y1)和點(diǎn)B(x2,y2)(點(diǎn)A在第二象限),求y2﹣y1的值(用含m的式子表示);
(3)在(2)中,若m=,設(shè)點(diǎn)A′是點(diǎn)A關(guān)于原點(diǎn)O的對稱點(diǎn),如圖2.
①判斷△AA′B的形狀,并說明理由;
②平面內(nèi)是否存在點(diǎn)P,使得以點(diǎn)A、B、A′、P為頂點(diǎn)的四邊形是菱形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,點(diǎn)為軸上一動點(diǎn),以為邊在的右側(cè)作等腰,,連接,則的最小值是 __________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com