精英家教網 > 初中數學 > 題目詳情

【題目】你吃過拉面嗎?實際上在做拉面的過程中就滲透著數學知識:一定體積的面團做成拉面,面條的總長度y(m)是面條的粗細(橫截面積)S(mm2)的反比例函數,其圖象如圖所示.

(1)寫出y(m)與S(mm2)的函數關系式;

(2)求當面條粗2mm2時,面條的總長度是多少米?

【答案】(1);(2)50米.

【解析】

(1)根據反比例函數圖象經過點(4,25),利用待定系數法進行解答;

(2)s=2代入函數解析式,計算即可求出總長度y的值.

解:(1)設y與s的函數關系式為y=,

∵P(4,25),

∴25=

解得k=100,

∴y與s的函數關系式是y=;

(2)x=2mm2時,y==50,

當面條粗2mm2時,面條長為50米.

故答案為:(1);(2)50米.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,AB∥CD,AD∥BC,OE=OF,圖中全等三角形共有( 。

A.6B.5C.4D.3

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲騎自行車,乙步行均從地出發(fā),以各自的速度勻速向地行駛,其中甲先出發(fā)到達地,停留分鐘后,按原路原速返回到地,乙則一直步行到地,如圖是甲乙兩人之間的距離米與甲用時之間的部分函數圖象.


1)請直接寫出甲,乙兩人的速度,并將圖中的( 。﹥忍钌险_的值;
2)求甲從地返回到與乙相遇這段過程中,之間的函數關系式;
3)求乙在向地行駛過程中甲乙兩人相距米時,甲所用時間及,兩地的距離.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知△ABC中,AB=AC,∠BAC=120°,在BC上取一點O,以O為圓心、OB為半徑作圓,且⊙O過A點.

(1)如圖①,若⊙O的半徑為5,求線段OC的長;

(2)如圖②,過點A作AD∥BC交⊙O于點D,連接BD,求的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,CD、EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.則圖中陰影部分的面積為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】定義:如果一個四邊形的兩條對角線相等且相互垂直,則稱這個四邊形為“等垂四邊形”.

如圖1,四邊形ABCD中,若AC=BD,AC⊥BD,則稱四邊形ABCD為“等垂四邊形.根據等垂四邊形對角線互相垂直的特征可得等垂四邊形的一個重要性質:等垂四邊形的面積等于兩條對角線乘積的一半.根據以上信息解答下列問題:

(1)矩形   “等垂四邊形”(填“是”或“不是”);

(2)如圖2,已知⊙O的內接四邊形ABCD是等垂四邊形,若⊙O的半徑為6,∠ADC=60°,求四邊形ABCD的面積;

(3)如圖3,已知⊙O的內接四邊形ABCD是等垂四邊形,作OM⊥AD于M.請猜想OM與BC的數量關系,并證明你的結論.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,點D、E分別在AB、AC上,且CEBC,連接CD,將線段CD繞點C按順時針方向旋轉90°后得到CF,連接EF

1)求證:△BDC≌△EFC;

2)若EFCD,求證:∠BDC90°.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一次函數y=kx+b與反比例函數y= (x>0)的圖象交于A(m,6),B(3,n)兩點,與x軸交于點C,與y軸交于點D,下列結論:①一次函數解析式為y=﹣2x+8;AD=BC;kx+b﹣ <0的解集為0<x<1x>3;④△AOB的面積是8,其中正確結論的個數是( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點 P 是∠AOB 內部一定點

1)若∠AOB50°,作點 P 關于 OA 的對稱點 P1,作點 P 關于 OB 的對稱點 P2,連 OP1OP2,則∠P1OP2___.

2)若∠AOBα,點 C、D 分別在射線 OA、OB 上移動,當PCD 的周長最小時,則∠CPD___(用 α 的代數式表示).

查看答案和解析>>

同步練習冊答案