【題目】關(guān)于x的方程3x2+mx﹣8=0有一個根是 ,求另一個根及m的值.

【答案】解:設(shè)方程的另一根為t.
依題意得:3×( 2+ m﹣8=0,
解得m=10.
t=﹣ ,
所以t=﹣4.
綜上所述,另一個根是﹣4,m的值為10
【解析】由于x= 是方程的一個根,直接把它代入方程即可求出m的值,然后由根與系數(shù)的關(guān)系來求方程的另一根.此題考查了根與系數(shù)的關(guān)系,一元二次方程的根的定義,把方程的根代入原方程就可以確定待定系數(shù)m的值.
【考點精析】本題主要考查了根與系數(shù)的關(guān)系的相關(guān)知識點,需要掌握一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a、b、c而定;兩根之和等于方程的一次項系數(shù)除以二次項系數(shù)所得的商的相反數(shù);兩根之積等于常數(shù)項除以二次項系數(shù)所得的商才能正確解答此題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在一條筆直的公路上有A,B,C三地,C地位于A,B兩地之間,甲,乙兩車分別從A,B兩地出發(fā),沿這條公路勻速行駛至C地停止.從甲車出發(fā)至甲車到達C地的過程,甲、乙兩車各自與C地的距離y(km)與甲車行駛時間t(h)之間的函數(shù)關(guān)系如圖表示,當甲車出發(fā)h時,兩車相距350km.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解學生的體能情況,隨機選取了1000名學生進行調(diào)查,并記錄了他們對長跑、短跑、跳繩、跳遠四個項目的喜歡情況,整理成以下統(tǒng)計表,其中“√”表示喜歡,“×”表示不喜歡.

項目
學生

長跑

短跑

跳繩

跳遠

200

×

300

×

×

150

×

200

×

×

150

×

×

×


(1)估計學生同時喜歡短跑和跳繩的概率;
(2)估計學生在長跑、短跑、跳繩、跳遠中同時喜歡三個項目的概率;
(3)如果學生喜歡長跑、則該同學同時喜歡短跑、跳繩、跳遠中哪項的可能性大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD對角線交于點O,BE∥AC,AE∥BD,EO與AB交于點F.

(1)試判斷四邊形AEBO的形狀,并說明你的理由;

(2)求證:EO=DC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(題文)圖1是一個長為2a,寬為2b的長方形,沿圖中虛線剪開分成四塊小長方形,然后按圖2的形狀拼成一個正方形.

圖2的陰影部分的正方形的邊長是______.

用兩種不同的方法求圖中陰影部分的面積.

(方法1)= ____________;

(方法2)= ____________;

(3) 觀察圖2,寫出(a+b)2,(a-b)2,ab這三個代數(shù)式之間的等量關(guān)系;

根據(jù)題中的等量關(guān)系,解決問題:若m+n=10,m-n=6,求mn的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖顯示了用計算機模擬隨機投擲一枚圖釘?shù)哪炒螌嶒灥慕Y(jié)果.

下面有三個推斷:

①當投擲次數(shù)是500時,計算機記錄釘尖向上的次數(shù)是308,所以釘尖向上的概率是0.616;

②隨著實驗次數(shù)的增加,釘尖向上的頻率總在0.618附近擺動,顯示出一定的穩(wěn)定性,可以估計釘尖向上的概率是0.618;

③若再次用計算機模擬實驗,則當投擲次數(shù)為1000時,釘尖向上的概率一定是0.620.

其中合理的是(

A. B. C. ①② D. ①③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解:

如圖,在平面直角坐標系中,若已知點A(xA,yA)和點C(xC,yC),點M為線段AC的中點,利用三角形全等的知識,有△AMP≌△CMQ,則有PM=MQ,PA=QC,即xM﹣xA=xC﹣xM,yA﹣yM=yM﹣yC,從而有,即中點M的坐標為(,).

基本知識:

(1)如圖,若A、C點的坐標分別A(﹣1,3)、C(3,﹣1),求AC中點M的坐標;

方法提煉:

(2)如圖,在平面直角坐標系中,ABCD的頂點A、B、C的坐標分別為(﹣1,5)、(﹣2,2)、(3,3),求點D的坐標;

(3)如圖,點A是反比例函數(shù)y=(x>0)上的動點,過點A作ABx軸,ACy軸,分別交函數(shù)y(x>0)的圖象于點B、C,點D是直線y=2x上的動點,請?zhí)剿髟邳cA運動過程中,以A、B、C、D為頂點的四邊形能否為平行四邊形,若能,求出此時點A的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在矩形ABCD中,BE平分∠ABC交CD邊于點E.點F在BC邊上,且FE⊥AE.

(1)如圖1,①∠BEC=_________°;

②在圖1已有的三角形中,找到一對全等的三角形,并證明你的結(jié)論;

(2)如圖2,F(xiàn)H∥CD交AD于點H,交BE于點M.NH∥BE,NB∥HE,連接NE.若AB=4,AH=2,求NE的長.

圖1 圖2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將含30°角的直角三角尺ABC繞點B順時針旋轉(zhuǎn)150°后得到△EBD,連接CD.若AB=4cm.則△BCD的面積為( 。

A. 4 B. 2 C. 3 D. 2

查看答案和解析>>

同步練習冊答案