【題目】等邊ABC中,點(diǎn)P由點(diǎn)A出發(fā)沿CA方向運(yùn)動,同時點(diǎn)Q以相同的速度從點(diǎn)B出發(fā)沿BC方向運(yùn)動,當(dāng)點(diǎn)Q到達(dá)C點(diǎn)時,P,Q兩點(diǎn)都停止運(yùn)動,連接PQ,交AB于點(diǎn)M

1)如圖①,當(dāng)PQBC時,求證:APAM

2)如圖②,試說明:在點(diǎn)P和點(diǎn)Q運(yùn)動的過程中,PMQM

【答案】(1)證明見解析;(2)證明見解析.

【解析】

1)過AADBCD,由等邊三角形的性質(zhì)得出∠BAD=CAD,證出PQAD,由平行線的性質(zhì)得出∠P=DAC,∠AMP=BAD,得出∠P=AMP,即可得出結(jié)論;
2)過QQEACABE,證出△BQE是等邊三角形,得出BQ=EQ,證出EQ=AP,證明△PMA≌△QMEAAS),即可得出PM=QM

1)證明:過AADBCD,如圖①所示:

∵△ABC是等邊三角形,ADBC

ABAC,∠BAD=∠CAD,

ADBCPQBC,

PQAD,

∴∠P=∠DAC,∠AMP=∠BAD

∴∠P=∠AMP,

APAM;

2)證明:過QQEACABE,如圖②所示:

則∠BEQ=∠BAC,∠BQE=∠C,∠P=∠EQM,

∵△ABC是等邊三角形,

∴∠B=∠BAC=∠C60°,

∴∠B=∠BEQ=∠BQE,

∴△BQE是等邊三角形,

BQEQ

APBQ,

EQAP

在△PMA和△QME中,

∴△PMA≌△QMEAAS),

PMQM

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°.

(1)作出經(jīng)過點(diǎn)B,圓心O在斜邊AB上且與邊AC相切于點(diǎn)E的⊙O(要求:用尺規(guī)作圖,保留作圖痕跡,不寫作法和證明)

(2)設(shè)(1)中所作的⊙O與邊AB交于異于點(diǎn)B的另外一點(diǎn)D,若⊙O的直徑為5,BC=4;求DE的長.(如果用尺規(guī)作圖畫不出圖形,可畫出草圖完成(2)問)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O△ABC的外接圓,直線l⊙O相切于點(diǎn)D,且l∥BC

(1)求證:AD平分∠BAC

(2)作∠ABC的平分線BEAD于點(diǎn)E,求證:BD=DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若長方形的長為,寬為,面積為10,則的函數(shù)關(guān)系用圖象表示大致為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩個反比例函數(shù)在第一象限內(nèi)的圖象如圖所示,點(diǎn)P的圖象上,PC軸于點(diǎn)C,交的圖象于點(diǎn)A,PC軸于點(diǎn)D,交的圖象于點(diǎn)B. 當(dāng)點(diǎn)P的圖象上運(yùn)動時,以下結(jié)論:

的值不會發(fā)生變化

PAPB始終相等

④當(dāng)點(diǎn)APC的中點(diǎn)時,點(diǎn)B一定是PD的中點(diǎn).

其中一定不正確的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角坐標(biāo)系中,△ABC的三個頂點(diǎn)的坐標(biāo)分別為(2,1),(﹣13),(﹣3,2).

1)在圖中作出△ABC關(guān)于x軸對稱的△ABC′,并寫出點(diǎn)A′的坐標(biāo)為   ,點(diǎn)B的坐標(biāo)為   ,點(diǎn)C′的坐標(biāo)為   ;

2)求△ABC的面積;

3)若點(diǎn)Pa,a2)與點(diǎn)Q關(guān)于y軸對稱,若PQ8,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,A(2,1),B(3,4)C(1,3),過點(diǎn)(l,0)x軸的垂線

(1)作出ABC關(guān)于直線的軸對稱圖形

(2)直接寫出A1(___,___)B1(___,___),C1(___,___);

(3)ABC內(nèi)有一點(diǎn)P(m,n),則點(diǎn)P關(guān)于直線的對稱點(diǎn)P1的坐標(biāo)為(______)(結(jié)果用含m,n的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,根據(jù)圖象解答下列問題:

(1)方程ax2+bx+c=0的兩個根為____________;

(2)不等式ax2+bx+c>0的解集為________;

(3)yx的增大而減小的自變量x的取值范圍為________;

(4)若方程ax2+bx+c=k有兩個不相等的實(shí)數(shù)根,k的取值范圍為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,DAB延長線上一點(diǎn),點(diǎn)EBC邊上,且BE=BD,連接AE、DEDC。

1)求證:△ABE≌△CBD

2)若∠CAE=30°,求∠BCD的度數(shù)。

查看答案和解析>>

同步練習(xí)冊答案