【題目】如圖,在四邊形ABCD中,AD∥BC,E是AB的中點,連接DE并延長交CB的延長線于點F,點G在邊BC上,且∠GDF=∠ADF.連接EG,判斷EG與DF的位置關系,并說明理由.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,BD垂直平分AC,垂足為點F,E為四邊形ABCD外一點,且∠ADE=∠BAD,AE⊥AC.
(1)求證:四邊形ABDE是平行四邊形;
(2)如果DA平分∠BDE,AB=5,AD=6,求AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在求1+2+22+23+24+25+26的值時,小明發(fā)現(xiàn):從第二個加數(shù)起每一個加數(shù)都是前一個加數(shù)的2倍,于是他設:S=1+2+22+23+24+25+26①然后在①式的兩邊都乘以2,得:2S=2+22+23+24+25+26+27 ②;②﹣①得2S﹣S=27﹣1,S=27﹣1,即1+2+22+23+24+25+26=27﹣1.
(1)求1+3+32+33+34+35+36的值;
(2)求1+a+a2+a3+…+a2013(a≠0且a≠1)的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC的三條角平分線相交于點I,過點I作DI⊥IC,交AC于點D.
(1)如圖①,求證:∠AIB=∠ADI;
(2)如圖②,延長BI,交外角∠ACE的平分線于點F.
①判斷DI與CF的位置關系,并說明理由;
②若∠BAC=70°,求∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=AC,點D為BC的中點,直角∠MDN繞點D旋轉,DM,DN分別與邊AB,AC交于E,F兩點,下列結論:①△DEF是等腰直角三角形;②AE=CF;③△BDE≌△ADF;④BE+CF=EF,其中正確結論是( )
A. ①②④ B. ②③④
C. ①②③ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司向甲、乙兩所中學送水,每次送往甲中學7600升,乙中學4000升.已知人均送水量相同,甲中學師生人數(shù)是乙中學的2倍少20人.
(1)求這兩所中學師生人數(shù)分別是多少;
(2)若送瓶裝水,價格為1元/升;若用消防車送飲用水,不需購買,但需配送水塔,容量500升的水塔售價為520元/個,其他費用不計.請問這次乙中學用瓶裝水花費少還是飲用消防車送水花費少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,⊙C的半徑為r,P是與圓心C不重合的點,點P關于⊙C的限距點的定義如下:若P′為直線PC與⊙C的一個交點,滿足r≤PP′≤2r,則稱P′為點P關于⊙C的限距點,如圖為點P及其關于⊙C的限距點P′的示意圖.
(1)當⊙O的半徑為1時.
①分別判斷點M(3,4),N( ,0),T(1, )關于⊙O的限距點是否存在?若存在,求其坐標;
②點D的坐標為(2,0),DE,DF分別切⊙O于點E,點F,點P在△DEF的邊上.若點P關于⊙O的限距點P′存在,求點P′的橫坐標的取值范圍;
(2)保持(1)中D,E,F(xiàn)三點不變,點P在△DEF的邊上沿E→F→D→E的方向運動,⊙C的圓心C的坐標為(1,0),半徑為r,請從下面兩個問題中任選一個作答.
問題1 | 問題2 |
若點P關于⊙C的限距點P′存在,且P′隨點P的運動所形成的路徑長為πr,則r的最小值為 | 若點P關于⊙C的限距點P′不存在,則r的取值范圍為 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,BE平分∠ABC交AD于點E,F(xiàn)為BE上一點,連接DF,過F作FG⊥DF交BC于點G,連接BD交FG于點H,若FD=FG,BF=3 ,BG=4,則GH的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列方程中變形正確的是( )
①3x+6=0變形為x+2=0;
②2x+8=5-3x變形為x=3;
③+=4去分母,得3x+2x=24;
④(x+2)-2(x-1)=0去括號,得x+2-2x-2=0.
A. ①③ B. ①②③ C. ①④ D. ①③④
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com