【題目】將相同的矩形卡片,按如圖方式擺放在一個直角上,每個矩形卡片長為2,寬為1,依此類推,擺放2014個時,實線部分長為_____.
【答案】5035
【解析】試題解析:由圖形可得出:擺放一個矩形實線長為3,
擺放2個矩形實線長為5,擺放3個矩形實線長為8,
擺放4個矩形實線長為10,擺放5個矩形實線長為13,
即第偶數(shù)個矩形實線部分在前一個的基礎上加2,
第奇數(shù)個矩形實線部分在前一個的基礎上加3,
∵擺放2014個時,相等于在第1個的基礎上加1007個2,1006個3,
∴擺放2014個時,實線部分長為:3+1007×2+1006×3=5035.
故答案為:5035.
補充其他方法:
第①個圖實線部分長 3
第②個圖實線部分長 3+2
第③個圖實線部分長 3+2+3
第④個圖實線部分長 3+2+3+2
第⑤個圖實線部分長 3+2+3+2+3
第⑥個圖實線部分長 3+2+3+2+3+2
…
從上述規(guī)律可以看到,對于第n個圖形,
當n為奇數(shù)時,第n個圖形實線部分長度為
當n為偶數(shù)時,第n個圖形實線部分長度為
所以當擺放2014個時,即第2014個圖形,
實線部分長度等于
故答案為:
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=-2x+4與x軸y軸相交于A,B兩點,點C在線段AB上,且∠COA=45°.
(1)求點A,B的坐標;
(2)求△AOC的面積;
(3)直線OC上有一動點D,過點D作直線l(不與直線AB重合)與x,y軸分別交于點E,F,當△OEF與△ABO全等時,求直線EF的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,Rt△OAB的頂點A在x軸的正半軸上,頂點B的坐標為(3,),點C的坐標為(1,0),點P為斜邊OB上的一動點,則PA+PC的最小值_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,一次函數(shù)y=x+3的圖象分別與x軸、y軸相交于點A、B,且與經(jīng)過點C(2,0)的一次函數(shù)y=kx+b的圖象相交于點D,點D的橫坐標為4,直線CD與y軸相交于點E.
(1)直線CD的函數(shù)表達式為______;(直接寫出結(jié)果)
(2)在x軸上求一點P使△PAD為等腰三角形,直接寫出所有滿足條件的點P的坐標.
(3)若點Q為線段DE上的一個動點,連接BQ.點Q是否存在某個位置,將△BQD沿著直線BQ翻折,使得點D恰好落在直線AB下方的y軸上?若存在,求點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB與x軸交于點A(4,0),與y軸交于點B(0,-4),若點E在線段AB上,OE⊥OF,且OE=OF,連接AF.
(1)猜想線段AF與BE之間的關系,并證明;
(2)過點O作OM⊥EF垂足為D,OM分別交AF、BA的延長線于點C、M若BE=,求CF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形紙片ABCD折疊,使點D與點B重合,點C落在C′處,折痕為EF,若AB=1,BC=2,則△ABE和△BC′F的周長之和為( )
A. 3 B. 4 C. 6 D. 8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一矩形紙片ABCD,AB=8,AD=17,將此矩形紙片折疊,使頂點A落在BC邊的A′處,折痕所在直線同時經(jīng)過邊AB、AD(包括端點),設BA′=x,則x的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在長方形OABC中,O為平面直角坐標系的原點,點A的坐標為(a,0),點C的坐標為(0,b)且a、b滿足+|b﹣6|=0,點B在第一象限內(nèi),點P從原點出發(fā),以每秒2個單位長度的速度沿著O﹣C﹣B﹣A﹣O的線路移動.
(1)點B的坐標為 ;當點P移動3.5秒時,點P的坐標為 ;
(2)在移動過程中,當點P到x軸的距離為4個單位長度時,求點P移動的時間;
(3)在O﹣C﹣B的線路移動過程中,是否存在點P使△OBP的面積是10,若存在求出點P移動的時間;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在平面直角坐標系中,三角形ABC的位置如圖所示.
(1)請寫出A、B、C三點的坐標;
(2)求△ABC的面積;
(3)△ABC經(jīng)過平移后得到△A′B′C′,已知△ABC內(nèi)的任意一點P(x,y)在△A′B′C′內(nèi)的對應點P′的坐標為(x+6,y+2).請你寫出△A′B′C′各頂點的坐標并圖中畫出△A′B′C′.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com