【題目】如圖,點(diǎn)A的坐標(biāo)為(0,1),點(diǎn)B是x軸正半軸上的一動點(diǎn),以AB為邊作等腰Rt△ABC,使∠BAC=90°,設(shè)點(diǎn)B的橫坐標(biāo)為x,設(shè)點(diǎn)C的縱坐標(biāo)為y,能表示y與x的函數(shù)關(guān)系的圖象大致是( )
A.
B.
C.
D.
【答案】A
【解析】解:作AD∥x軸,作CD⊥AD于點(diǎn)D,若右圖所示,
由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,點(diǎn)C的縱坐標(biāo)是y,
∵AD∥x軸,
∴∠DAO+∠AOD=180°,
∴∠DAO=90°,
∴∠OAB+∠BAD=∠BAD+∠DAC=90°,
∴∠OAB=∠DAC,
在△OAB和△DAC中,
,
∴△OAB≌△DAC(AAS),
∴OB=CD,
∴CD=x,
∵點(diǎn)C到x軸的距離為y,點(diǎn)D到x軸的距離等于點(diǎn)A到x的距離1,
∴y=x+1(x>0).
故答案為:A.
過點(diǎn)C作y軸垂線,構(gòu)造出全等三角形,尤其性質(zhì)對應(yīng)邊轉(zhuǎn)化為坐標(biāo)求出y、x的函數(shù)關(guān)系是y=x+1(x>0),圖像是一條射線.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一袋中裝有形狀大小都相同的四個小球,每個小球上各標(biāo)有一個數(shù)字,分別是1,4,7,8.現(xiàn)規(guī)定從袋中任取一個小球,對應(yīng)的數(shù)字作為一個兩位數(shù)的個位數(shù);然后將小球放回袋中并攪拌均勻,再任取一個小球,對應(yīng)的數(shù)字作為這個兩位數(shù)的十位數(shù).
(1)寫出按上述規(guī)定得到所有可能的兩位數(shù);
(2)從這些兩位數(shù)中任取一個,求其算術(shù)平方根大于4且小于7的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點(diǎn)的坐標(biāo)分別是A(2,2)、B(4,0)、C(4,﹣4).
①請畫出△ABC向左平移6個單位長度后得到的△A1B1C1;
②以點(diǎn)O為位似中心,將△ABC縮小為原來的 ,得到△A2B2C2 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,平分,⊥,∠B=450,∠C=730.
(1) 求的度數(shù);
(2) 如圖②,若把“⊥”變成“點(diǎn)F在DA的延長線上,”,其它條件不變,求 的度數(shù);
(3) 如圖③,若把“⊥”變成“平分”,其它條件不變,的大小是否變化,并請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(2,3),點(diǎn)B(﹣2,1),在x軸上存在點(diǎn)P到A,B兩點(diǎn)的距離之和最小,則P點(diǎn)的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,已知點(diǎn)A(6,0),又點(diǎn)B(x,y)在第一象限內(nèi),且x+y=8,設(shè)△AOB的面積是S.
(1)寫出S與x之間的函數(shù)解析式,并求出x的取值范圍;
(2)畫出(1)中所求函數(shù)的圖象.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】趙爽弦圖是由四個全等的直角三角形與中間的一個小正方形拼成的一個大正方形,如圖所示,若這四個全等直角三角形的兩條直角邊分別平行于x軸和y軸,大正方形的頂點(diǎn)B1、C1、C2、C3、…、Cn在直線y=﹣ x+ 上,頂點(diǎn)D1、D2、D3、…、Dn在x軸上,則第n個陰影小正方形的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中,∠2=2∠1,點(diǎn)C為x軸正半軸上的一動點(diǎn).
(1)求∠1的度數(shù);
(2)若OF∥AC,OE∥AB,求證:∠EOF=∠EAF;
(3)點(diǎn)C在運(yùn)動中,若∠1=∠ACO,試判斷AB與AC有怎樣的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,斜坡AP的坡度為1:2.4,坡長AP為26米,在坡頂A處的同一水平面上有一座古塔BC,在斜坡底P處測得該塔的塔頂B的仰角為45°,在坡頂A處測得該塔的塔頂B的仰角為76°.求:
(1)坡頂A到地面PQ的距離;
(2)古塔BC的高度(結(jié)果精確到1米).(參考數(shù)據(jù):sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com