【題目】如圖,在Rt△ABC中,∠ACB = 90°,BC = 3,AC = 4,點D為邊AB上一點.將△BCD沿直線CD翻折,點B落在點E處,聯(lián)結(jié)AE.如果AE // CD,那么BE =________.
【答案】(或4.8)
【解析】
過D作DG⊥BC于G,依據(jù)折疊的性質(zhì)即可得到CD垂直平分BE,再根據(jù)AE∥CD,得出CD=BD=2.5,進而得到BG=1.5,再根據(jù)BC×DG=CD×BF,即可得到BF的長,即可得出BE的長.
解:如圖所示,過D作DG⊥BC于G,
由折疊可得,CD垂直平分BE,
∴當CD∥AE時,∠AEB=∠DFB=90°,
∴∠DEB+∠DEA=90°,∠DBE+∠DAE=90°,
∵DB=DE,
∴∠DEB=∠DBE,
∴∠DAE=∠DEA,
∴AD=DE,
∴AD=BD,
∴D是AB的中點,
∴Rt△ABC中,CD=BD=2.5,
∵DG⊥BC,
∴BG=1.5,
∴Rt△BDG中,DG=2,
∵BC×DG=CD×BF,
∴BF= =,
∴BE=2BF=,
故答案為.
科目:初中數(shù)學 來源: 題型:
【題目】“校園手機”現(xiàn)象越來越受到社會的關注.為了了解學生和家長對中學生帶手機的態(tài)度,某記者隨機調(diào)查了城區(qū)若干名學生和家長的看法,調(diào)查結(jié)果分為:贊成、無所謂、反對,并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計表和統(tǒng)計圖:
根據(jù)以上圖表信息,解答下列問題:
(1)統(tǒng)計表中的A________;
(2)統(tǒng)計圖中表示家長“贊成”的圓心角的度數(shù)為________度;
(3)從這次接受調(diào)查的學生中,隨機抽查一個,恰好是持“反對”態(tài)度的學生的概率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形中,,按以下步驟作圖:①分別以點和點為圓心,為圓心,大于號的長為半徑面狐,兩弧交于點,:②做直線,且恰好經(jīng)過點,與交于點,連接,則的值為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AD=5,AB=8,點E為DC上一個動點,把△ADE沿AE折疊,若點D的對應點D′,連接D′B,以下結(jié)論中:①D′B的最小值為3;②當DE=時,△ABD′是等腰三角形;③當DE=2是,△ABD′是直角三角形;④△ABD′不可能是等腰直角三角形;其中正確的有_____.(填上你認為正確結(jié)論的序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在Rt△ABC中,∠ACB=90°,D是邊AB的中點,CE=CB,CD=5,.
求:(1)BC的長.
(2)tanE的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A,B在雙曲線y=(x>0)上,點C在雙曲線y=(x>0)上,若AC∥y軸,BC∥x軸,且AC=BC,則AB等于( 。
A. B. 2 C. 4 D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市某鄉(xiāng)鎮(zhèn)實施產(chǎn)業(yè)精準扶貧,幫助貧困戶承包了若干畝土地種植新品草莓,已知該草莓的成本為每千克10元,草莓成熟后投入市場銷售,經(jīng)市場調(diào)查發(fā)現(xiàn),草莓銷售不會虧本,且每天的銷售量y(千克)與銷售單價x(元/千克)之間函數(shù)關系如圖所示.
(1)求y與x的函數(shù)關系式,并寫出x的取值范圍.
(2)當該品種草莓的定價為多少時,每天銷售獲得利潤最大?最大利潤是多少?
(3)某村今年草莓采摘期限30天,預計產(chǎn)量6000千克,則按照(2)中的方式進行銷售,能否銷售完這批草莓?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將矩形ABCD繞點A順時針旋轉(zhuǎn)得到矩形AEFG,點E在BD上;
(1)求證:FD=AB;(2)連接AF,求證:∠DAF=∠EFA.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC 中,AB = AC,以AB為直徑的⊙O 分 別交AC,BC于點 D,E,過點B作⊙O的切線, 交 AC的延長線于點F.
(1) 求證:∠CBF =∠CAB;
(2) 若CD = 2,,求FC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com