【題目】如圖,AO=BO=50cm,OC是一條射線,OC⊥AB,一只螞蟻由A以2cm/s的速度向B爬行;同時另一只螞蟻由O點以3cm/s的速度沿OC方向爬行.問:是否存在這樣的時刻,使兩只小螞蟻與點O點組成的三角形面積為450cm2?
【答案】15s或10s或30s.
【解析】
可以分兩種情況進(jìn)行討論:(1)當(dāng)螞蟻在AO上運動;(2)當(dāng)螞蟻在OB上運動.根據(jù)三角形的面積公式即可列方程求解.
有兩種情況:
(1)如圖1,當(dāng)螞蟻在AO上運動時,
設(shè)x秒后兩只螞蟻與O點組成的三角形面積為450cm2,
由題意,得:×3x×(50﹣2x)=450,
整理,得:x2﹣25x+150=0,
解得:x1=15,x2=10.
(2)如圖2,當(dāng)螞蟻在OB上運動時,
設(shè)x秒鐘后,兩只螞蟻與O點組成的三角形面積為450cm2,
由題意,得:×3x(2x﹣50)=450,
整理,得:x2﹣25x﹣150=0,
解得x1=30,x2=﹣5(舍去).
答:15s,10s,30s后,兩螞蟻與O點組成的三角形的面積均為450cm2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,AC與BD交于點E,點E是BD的中點,延長CD到點F,使DF=CD,連接AF,
(1)求證:AE=CE;
(2)求證:四邊形ABDF是平行四邊形;
(3)若AB=2,AF=4,∠F=30°,則四邊形ABCF的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題呈現(xiàn))如圖1,在邊長為1的正方形網(wǎng)格中,連接格點D,N和E,C,DN和EC相交于點P,求tan∠CPN的值.
(方法歸納)求一個銳角的三角函數(shù)值,我們往往需要找出(或構(gòu)造出)一個直角三角形.觀察發(fā)現(xiàn)問題中∠CPN不在直角三角形中,我們常常利用網(wǎng)格畫平行線等方法解決此類問題,比如連接格點M,N,可得MN∥EC,則∠DNM=∠CPN,連接DM,那么∠CPN就變換到Rt△DMN中.
(問題解決)(1)直接寫出圖1中tan∠CPN的值為 ;
(2)如圖2,在邊長為1的正方形網(wǎng)格中,AN與CM相交于點P,求cos∠CPN的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年4月23日是中國人民解放軍海軍成立70周年紀(jì)念日,屆時將在青島舉行盛大的多國海軍慶;顒樱疄榇宋覈\娺M(jìn)行了多次軍事演習(xí).如圖,在某次軍事演習(xí)時,艦艇A發(fā)現(xiàn)在他北偏東22°方向上有不明敵艦在指揮中心O附近徘徊,快速報告給指揮中心,此時在艦艇A正西方向50海里處的艦艇B接到返回指揮中心的行動指令,艦艇B迅速趕往在他北偏東60°方向的指揮中心處,艦艇B的速度是80海里/小時,請根據(jù)以上信息,求艦艇B到達(dá)指揮中心O的時間.(結(jié)果精確到0.1小時,參考數(shù)據(jù):(sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,=1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD的外側(cè),作等邊三角形ADE,連接BE,CE.
(1)求證:BE=CE.
(2)求∠BEC的度數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC看,∠BAC=90°,AC=12,AB=10,D是AC上一個動點,以AD為直徑的⊙O交BD于E,則線段CE的最小值是( )
A. 5 B. 6 C. 7 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,y=ax2+bx+c的圖象經(jīng)過點(﹣1,0),(m,0);有如下判斷:①abc<0;②b>3c;③=1﹣;④|am+a|=.其中正確的判斷有( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD中,AB=4cm,BC=8cm.動點P在邊BC上從點B向C運動,速度為1cm/s;同時動點Q從點C出發(fā),沿折線C→D→A運動,速度為2cm/s.當(dāng)一個點到達(dá)終點時,另一個點隨之停止運動。設(shè)點P運動的時間為t(s),△BPQ的面積為S(cm2),則描述S(cm2)與時間t(s)的函數(shù)關(guān)系的圖象大致是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,有一塊直角三角板,其中,,,A、B在x軸上,點A的坐標(biāo)為,圓M的半徑為,圓心M的坐標(biāo)為,圓M以每秒1個單位長度的速度沿x軸向右做平移運動,運動時間為t秒;
求點C的坐標(biāo);
當(dāng)點M在的內(nèi)部且與直線BC相切時,求t的值;
如圖2,點E、F分別是BC、AC的中點,連接EM、FM,在運動過程中,是否存在某一時刻,使?若存在,直接寫出t的值,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com