已知:直線y=kx(k≠0)經過點(3,-4).
(1)求k的值;
(2)將該直線向上平移m(m>0)個單位,若平移后得到的直線與半徑為6的⊙O相離(點O為坐標原點),試求m的取值范圍.

【答案】分析:(1)利用待定系數(shù)法解答;
(2)得出平移后得到的直線,求出A、B點的坐標,轉化為直角三角形中的問題,再由直線與圓的位置關系的判定解答.
解答:解:(1)把點(3,-4)代入直線y=kx得,
-4=3k,
∴k=-;

(2)由y=x平移平移m(m>0)個單位后得到的直線l所對應的函數(shù)關系式為y=-x+m(m>0),
設直線l與x軸、y軸分別交于點A、B,(如下圖所示)
當x=0時,y=m;當y=0時,x=m,
∴A(m,0),B(0,m),
即OA=m,OB=m;
在Rt△OAB中,
AB=,
過點O作OD⊥AB于D,
∵S△ABO=OD•AB=OA•OB,
OD•=×
∵m>0,解得OD=
由直線與圓的位置關系可知>6,解得m>10.即m的取值范圍為m>10.
點評:此題主要考查待定系數(shù)法、勾股定理、直線與圓的位置關系等知識.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知:直線y=kx(k≠0)經過點(3,-4).
(1)求k的值;
(2)將該直線向上平移m(m>0)個單位,若平移后得到的直線與半徑為6的⊙O相離(點O為坐標原點),試求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知,直線y=kx+(2-k)(其中k≠0),k取不同數(shù)值時,可得不同直線,探究:精英家教網這些直線的共同特征.
(1)當k=1時,直線l1的解析式為
 
,請畫出圖象;
當k=2時,直線l2的解析式為
 
,請畫出圖象;
觀察圖象,猜想:直線y=kx+(2-k)必經過點(
 
,
 
);
(2)證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:直線y=kx+b過A(-
32
,0),B(0,3),求不等式kx+b≥-3的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知,直線y=kx+b經過點A(-1,-2)和點B(-2,0),直線y=2x過點A,則不等式2x<kx+b<0的解集為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網已知:直線y=kx+b的圖象過點A(-3,1);B(-1,2),
(1)求:k和b的值;
(2)求:△AOB的面積(O為坐標原點);
(3)在x軸上有一動點C使得△ABC的周長最小,求C點坐標.

查看答案和解析>>

同步練習冊答案