在平面直角坐標(biāo)系中,點(diǎn)P是拋物線C:y=ax2在第一象限內(nèi)上的一點(diǎn),連接 OP,過點(diǎn)O作OP的垂線交拋物線于另一點(diǎn)Q,連接PQ,交y軸于點(diǎn)M.

(1)如圖1,若PQ∥x軸,且PQ=2,求拋物線C的解析式;
(2)如圖2,過點(diǎn)P作PA丄x軸于點(diǎn)A,設(shè)點(diǎn)P的橫坐標(biāo)為m.
①用含m的代數(shù)式表示點(diǎn)Q的橫坐標(biāo)為
 
;
②連接AM,求證:AM∥OQ;
(3)如圖3,將拋物線C:y=ax2作關(guān)于x軸的軸對(duì)稱變換,然后平移經(jīng)過P,Q兩點(diǎn)得到拋物線C′,設(shè)拋物線C′的頂點(diǎn)為R,判斷四邊形OPRQ的形狀?
考點(diǎn):二次函數(shù)綜合題
專題:壓軸題
分析:(1)根據(jù)二次函數(shù)的對(duì)稱性可得OP=OQ,從而得到△POQ是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)求出點(diǎn)P的坐標(biāo),然后代入拋物線解析式求出a,即可得解;
(2)根據(jù)點(diǎn)P的橫坐標(biāo)求出OA、PA,①過點(diǎn)Q作QB⊥x軸于B,設(shè)點(diǎn)Q的橫坐標(biāo)為x,表示出點(diǎn)Q的縱坐標(biāo),再根據(jù)△AOP和△BQO相似,利用相似三角形對(duì)應(yīng)邊成比例列式求解即可;
②設(shè)直線PQ的解析式為y=kx+b(k≠0),利用待定系數(shù)法求出直線解析式,再求出點(diǎn)M的坐標(biāo),然后根據(jù)兩邊對(duì)應(yīng)成比例,夾角相等,兩三角形相似求出△BOQ和△OAM相似,根據(jù)相似三角形對(duì)應(yīng)角相等求出∠BOQ=∠OAM,再根據(jù)同位角相等,兩直線平行證明即可;
(3)作出圖形,然后根據(jù)四個(gè)角都是直角的四邊形是矩形判斷即可.
解答:解:(1)∵PQ∥x軸,拋物線y=ax2的對(duì)稱軸為y軸,
∴OP=OQ,
∵OP⊥OQ,
∴△POQ是等腰直角三角形,
∵PQ=2,
∴OM=MP=
1
2
×2=1,
∴點(diǎn)P的坐標(biāo)為(1,1),
∴a=1,
∴拋物線C的解析式y(tǒng)=x2;

(2)如圖2,∵點(diǎn)P的橫坐標(biāo)為m,
∴OA=m,PA=am2
①過點(diǎn)Q作QB⊥x軸于B,設(shè)點(diǎn)Q的橫坐標(biāo)為x,則點(diǎn)Q的縱坐標(biāo)為y=ax2,
由OP⊥OQ易求△AOP∽△BQO,
OB
PA
=
BQ
OA
,
-x
am2
=
ax2
m
,
解得x=-
1
a2m
,
即,點(diǎn)Q的橫坐標(biāo)為-
1
a2m
,
故答案為:-
1
a2m


③設(shè)直線PQ的解析式為y=kx+b(k≠0),
mk+b=am2
-
k
a2m
+b=
a
a4m2

解得
k=am-
1
am
b=
1
a
,
∴直線PQ的解析式為y=(am-
1
am
)x+
1
a
,
令x=0,則y=
1
a

∴點(diǎn)M(0,
1
a
),
OA
OM
=
m
1
a
=am,
OB
BQ
=
1
a2m
a
a4m2
=am,
OA
OM
=
OB
BQ
,
又∵∠OBQ=∠AOM=90°,
∴△BOQ∽△OAM,
∴∠BOQ=∠OAM,
∴AM∥OQ;

(3)如圖3,由翻折和平移的性質(zhì),∠R=∠POQ=90°,
∠OQR=∠OPR=∠OPQ+∠OQP=90°,
∴四邊形OPRQ是矩形.
點(diǎn)評(píng):本題是二次函數(shù)綜合題型,主要利用了二次函數(shù)圖象的軸對(duì)稱性,等腰直角三角形的判定與性質(zhì),待定系數(shù)法求二次函數(shù)解析式,相似三角形的判定與性質(zhì),(2)作輔助線構(gòu)造出相似三角形是解題的關(guān)鍵,(3)根據(jù)幾何變換的性質(zhì)作出圖形更形象直觀.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

某商店?duì)I業(yè)員小王每周收入是250元,再加上該周營業(yè)額的8%作為獎(jiǎng)金.一周結(jié)束時(shí),她掙了378元,這可用下列方程式表示,s表示該周的營業(yè)額:250+0.08s=378.那么該周營業(yè)員小王銷售的營業(yè)額是( 。
A、800元B、1200元
C、1600元D、2000元

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

既不是分?jǐn)?shù)也不是0的有理數(shù)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下邊橫排有12個(gè)方格,每個(gè)方格都有一個(gè)數(shù)字,已知任何相鄰三個(gè)數(shù)字的和都是20,則x的值是( 。
A、5B、10C、15D、20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)M,N為△ABC的邊AC,BC上的兩個(gè)定點(diǎn),用尺規(guī)在AB上求作一點(diǎn)P,使
△PMN的周長(zhǎng)最。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某班共有學(xué)生49人.一天,該班某男生因事請(qǐng)假,當(dāng)天的男生人數(shù)恰為女生人數(shù)的一半.若設(shè)該班男生人數(shù)為x,則依題意列出的方程是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

設(shè)某數(shù)為x,根據(jù)條件將所列方程填入下列橫線上.
(1)某數(shù)的3倍與6的和是27:
 

(2)某數(shù)的28%是12:
 

(3)某數(shù)的5倍減去7與某數(shù)的2倍加上6相等:
 

(4)某數(shù)的平方加上8等于24:
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如果方程(a-b)x=|a-b|的解是x=-1,那么( 。
A、a=bB、a>b
C、a≠bD、a<b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在5×5的正方形網(wǎng)格中(每個(gè)小正方形的邊長(zhǎng)為1)
(1)在圖1網(wǎng)格中作出和△ABC有一個(gè)公共角∠B且與△ABC相似,但不全等的所有格點(diǎn)三角形.
(2)在網(wǎng)格中若格點(diǎn)三角形△DEF和△ABC相似,設(shè)△DEF與△ABC的相似比為k,則滿足條件的k的值為
 
(直接填空)

查看答案和解析>>

同步練習(xí)冊(cè)答案