【題目】如圖,P,Q分別是雙曲線在第一、三象限上的點(diǎn),PA⊥軸,QB⊥軸,垂足分別為A,B,點(diǎn)C是PQ與軸的交點(diǎn).設(shè)△PAB的面積為,△QAB的面積為,△QAC的面積為,則有( )
A. B. C. D.
【答案】D
【解析】試題分析:如圖,延長(zhǎng)PA、QB交于點(diǎn)M,則△QMB是直角三角形,,可得AM=OB,BM=OA,根據(jù)反比例函數(shù)k的幾何意義可得OB·BQ=OA·AP=k,所以AM·BQ=BM·AP,即,即可得,由相似三角形的判定定理可得△ABM∽△PQM,根據(jù)相似三角形的性質(zhì)可得∠BAM=∠QPM,所以AB∥PQ,即可得四邊形ABQC是平行四邊形,所以△QAB的面積等于△QAC的面積,即=,因AB∥PQ,根據(jù)同底等高的兩個(gè)三角形的面積相等可得設(shè)△PAB的面積等于△QAB的面積,即=,所以,故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平行四邊形ABCD的兩個(gè)頂點(diǎn)A、C在反比例函數(shù)(k≠0)圖象上,點(diǎn)B、D在x軸上,且B、D兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,AD交y軸于P點(diǎn)
(1)已知點(diǎn)A的坐標(biāo)是(2,3),求k的值及C點(diǎn)的坐標(biāo);
(2)若△APO的面積為2,求點(diǎn)D到直線AC的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平行四邊形中,一定有( )
A.兩條對(duì)角線相等B.兩條對(duì)角線垂直
C.兩條對(duì)角線互相平分D.一條對(duì)角線平分一組對(duì)角
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,AC為對(duì)角線,AC=BC=5,AB=6,AE是△ABC的中線.
(1)用無(wú)刻度的直尺畫出△ABC的高CH(保留畫圖痕跡);
(2)求△ACE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各對(duì)數(shù)中,互為相反數(shù)的一組是( )
A. -32與-23 B. (-3)2與-32 C. -23與(-2)3 D. (-3×2)3與-3×23
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列每組數(shù)分別表示三根木棒的長(zhǎng)度,將它們首尾連接后,能擺成三角形的一組是( )
A.1,2,5B.2,2,4C.1,2,3D.2,3,4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列等式變形不正確的是( )
A.由x=y,得到x+2=y+2
B.由2a﹣3=b﹣3,得到2a=b
C.由m=n,得到2am=2an
D.由am=an,得到m=n
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在共有l5人參加的演講加比賽中,參賽選手的成績(jī)各不相同,因此選手要想知道自己是否進(jìn)入前八名,只需了解自己的成績(jī)以及全部成績(jī)的
A.平均數(shù)B.眾數(shù)C.中位數(shù)D.方差
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一塊三角形的草坪,現(xiàn)要在草坪上建一涼亭供大家休息,要使涼亭到草坪三條邊的距離相等,涼亭的位置應(yīng)選在( )
A.三角形的三條中線的交點(diǎn)
B.三角形三邊的垂直平分線的交點(diǎn)
C.三角形三條內(nèi)角平分線的交點(diǎn)
D.三角形三條高所在直線的交點(diǎn)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com