如圖,在平面直角坐標(biāo)系xoy中,⊙O1與x軸交于A、B兩點(diǎn),與y軸正半軸交于C點(diǎn),已知A(-1,0),O1(1,0)
(1)求出C點(diǎn)的坐標(biāo).
(2)過(guò)點(diǎn)C作CDAB交⊙O1于D,連接BD,求證:四邊形ABDC是等腰梯形.
(3)若過(guò)點(diǎn)C的直線恰好平分四邊形ABCD的面積,求出該直線的解析式.
(1)∵A(-1,0),O1(1,0),
∴OA=OO1又O1A=O1C…1分,
∴易知△O1AC為等邊三角形…2分,
∴易求C點(diǎn)的坐標(biāo)為(0,
3
)…3分.

(2)證明:連接AD,
∵CDAB,
∴∠CDA=∠BAD,
AC
=
BD
,
∴AC=BD,
∵直徑AB于弦CD不等,
∴AC不平行BD,
∴四邊形ABCD為等腰梯形…7分.

(3)解法一:過(guò)D作DH⊥AB于H,
∴△AOC≌△BDH,四邊形COHD為矩形…8分,
∴CH必平分四邊形ABCD的面積,
易求點(diǎn)H(2,0)…9分,
設(shè)直線CH的解析式為:y=kx+b,
則:
2k+b=0
b=
3
,
解得
k=-
3
2
b=
3
…11分,
∴直線CH的解析式:y=-
3
2
x+
3
…12分.
解法二:設(shè)直線CH平分四邊形ABCD的面積,并設(shè)H(x,0),
連接AD,
∵CDAB,
∴∠CDA=∠BAD,
AC
=
BD
,
∴AC=BD=2,
∵S△ACH=S梯形CDBH,
1
2
3
(x+1)=
1
2
3
[2+(3-x)]
,
∴x+1=5-x,
∴x=2,
由C(0,
3
)和H(2,0),易求CH的解析式:y=-
3
2
x+
3
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知一次函數(shù)的圖象過(guò)點(diǎn)A(3,3)和點(diǎn)B(-1,-9)
(1)求此一次函數(shù)的解析式;
(2)求此函數(shù)與x軸、y軸的交點(diǎn)坐標(biāo);
(3)作出此一次函數(shù)的圖象;
(4)求出此函數(shù)圖象與坐標(biāo)軸圍成的三角形的面積和周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

2006年的夏天,某地旱情嚴(yán)重.該地10號(hào),15號(hào)的人日均用水量的變化情況如圖所示.若該地10號(hào),15號(hào)的人均用水量分別為18千克和15千克,并一直按此趨勢(shì)直線下降.當(dāng)人日均用水量低于10千克時(shí),政府將向當(dāng)?shù)鼐用袼退敲凑畱?yīng)開(kāi)始送水的號(hào)數(shù)為( 。
A.23B.24C.25D.26

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

受?chē)?guó)際金融危機(jī)影響,市自來(lái)水公司號(hào)召全市市民節(jié)約用水.決定采取月用水量分段收費(fèi)辦法,某戶居民應(yīng)交水費(fèi)y(元)與用水量x(噸)的函數(shù)關(guān)系如圖所示.若該用戶本月用水21噸,則應(yīng)交水費(fèi)(  )
A.52.5元B.45元C.42元D.37.8元

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在平面直角坐標(biāo)系內(nèi),已知點(diǎn)A(0,6)、點(diǎn)B(8,0),動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始在線段AO上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)O移動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)B開(kāi)始在線段BA上以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)A移動(dòng),設(shè)點(diǎn)P、Q移動(dòng)的時(shí)間為t秒.
(1)求直線AB的解析式;
(2)當(dāng)t為何值時(shí),以點(diǎn)A、P、Q為頂點(diǎn)的三角形與△AOB相似?
(3)當(dāng)t=2秒時(shí),四邊形OPQB的面積為多少個(gè)平方單位?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,⊙O的圓心在坐標(biāo)原點(diǎn),半徑為2,直線y=x+b(b>0)與⊙O交于A、B兩點(diǎn),點(diǎn)O關(guān)于直線y=x+b的對(duì)稱點(diǎn)O′,
(1)求證:四邊形OAO′B是菱形;
(2)當(dāng)點(diǎn)O′落在⊙O上時(shí),求b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

國(guó)家發(fā)改委日前表示,居民階梯電價(jià)方案將在今年上半年推出,按發(fā)改委先前公布的《居民用電實(shí)行階梯電價(jià)的指導(dǎo)意見(jiàn)(征求意見(jiàn)稿)》的標(biāo)準(zhǔn),繪制了居民每月電費(fèi)y(元)隨本月用電量x(度)變化的圖象.根據(jù)圖象中的有關(guān)數(shù)據(jù)解答下列問(wèn)題:
(1)當(dāng)x≤110時(shí),按方案一,每度電______元;當(dāng)x≤140時(shí),按方案二,每度電______元.
(2)當(dāng)110≤x≤210時(shí),按方案一,求y與x的函數(shù)關(guān)系式.
(3)經(jīng)調(diào)查約80的居民用電量在140度到210度之間,這兩種方案哪一種對(duì)這部分居民來(lái)說(shuō)更省錢(qián)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,⊙O的直徑為10,弦AC=8,點(diǎn)B在圓周上運(yùn)動(dòng)(與A、C兩點(diǎn)不重合),連接BC、BA,過(guò)點(diǎn)C作CD⊥AB于D、設(shè)CB的長(zhǎng)為x,CD的長(zhǎng)為y.
(1)求y關(guān)于x的函數(shù)關(guān)系式;當(dāng)以BC為直徑的圓與AC相切時(shí),求y的值;
(2)在點(diǎn)B運(yùn)動(dòng)的過(guò)程中,以CD為直徑的圓與⊙O有幾種位置關(guān)系,并求出不同位置時(shí)y的取值范圍;
(3)在點(diǎn)B運(yùn)動(dòng)的過(guò)程中,如果過(guò)B作BE⊥AC于E,那么以BE為直徑的圓與⊙O能內(nèi)切嗎?若不能,說(shuō)明理由;若能,求出BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知下面的計(jì)算程序.則y與x之間的函數(shù)關(guān)系式為_(kāi)_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案