【題目】如圖為某海域示意圖,其中燈塔D的正東方向有一島嶼C.一艘快艇以每小時(shí)20nmile的速度向正東方向航行,到達(dá)A處時(shí)得燈塔D在東北方向上,繼續(xù)航行0.3h,到達(dá)B處時(shí)測(cè)得燈塔D在北偏東30°方向上,同時(shí)測(cè)得島嶼C恰好在B處的東北方向上,此時(shí)快艇與島嶼C的距離是多少?(結(jié)果精確到1nmile.參考數(shù)據(jù):1.41,1.73,2.45

【答案】此時(shí)快艇與島嶼C的距離是20nmile

【解析】

過點(diǎn)DDEAB于點(diǎn)E,過點(diǎn)CCFAB于點(diǎn)F,由DECFDCEF,∠CFE=90°可得出四邊形CDEF為矩形,設(shè)DE=x nmile,則AE=x nmile),BE=xnmile),由AB=6 nmile,可得出關(guān)于x的一元一次方程,解之即可得出x的值,再在RtCBF中,通過解直角三角形可求出BC的長(zhǎng).

解:過點(diǎn)DDEAB于點(diǎn)E,過點(diǎn)CCFAB于點(diǎn)F,如圖所示.

DECF,∠DEA=∠CFA90°.

DCEF,

∴四邊形CDEF為平行四邊形.

又∵∠CFE90°,

CDEF為矩形,

CFDE

根據(jù)題意,得:∠DAB45°,∠DBE60°,∠CBF45°.

設(shè)DExnmile),

RtDEA中,∵tanDAB,

AExnmile).

RtDEB中,∵tanDBE,

BExnmile).

AB20×0.36nmile),AEBEAB,

xx6,解得:x9+3,

CFDE=(9+3nmile

RtCBF中,sinCBF,

BC20nmile).

答:此時(shí)快艇與島嶼C的距離是20nmile

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,MN是⊙O的直徑,點(diǎn)A是半圓上的三等分點(diǎn),點(diǎn)B是劣弧AN的中點(diǎn),點(diǎn)P是直徑MN上一動(dòng)點(diǎn).若MN=2,AB=1,則△PAB周長(zhǎng)的最小值是( 。

A. 2+1 B. +1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:sin,cos90°)是關(guān)于x的一元二次方程2x2-(+1)x+m0的兩個(gè)實(shí)數(shù)根,試求角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形AOCB的兩邊OA,OC分別在x軸和y軸上,且OA2OC1,則矩形AOCB的對(duì)稱中心的坐標(biāo)是___;在第二象限內(nèi),將矩形AOCB以原點(diǎn)O為位似中心放大為原來的倍,得到矩形A1OC1B1,再將矩形A1OC1B1以原點(diǎn)O為位似中心放大倍,得到矩形A2OC2B,,按此規(guī)律,則矩形A4OC4B4的對(duì)稱中心的坐標(biāo)是___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB5,BC6,點(diǎn)M,N分別在AD,BC上,且AMAD,BNBC,E為直線BC上一動(dòng)點(diǎn),連接DE,將△DCE沿DE所在直線翻折得到△DCE,當(dāng)點(diǎn)C′恰好落在直線MN上時(shí),CE的長(zhǎng)為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形的內(nèi)切圓O半徑為2,如圖,正方形的四個(gè)角上分別有一個(gè)直角三角形,如果直角三角形的第三邊與圓O相切且平行于對(duì)角線.則陰影部分的面積為(  )

A. 3232B. C. 1D. 16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是矩形紙片,將BCD沿BD折疊,得到BED,BEAD于點(diǎn)F,AB3AFFD12,則AF_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為2a,EBC邊的中點(diǎn), 的圓心分別在邊AB、CD上,這兩段圓弧在正方形內(nèi)交于點(diǎn)F,則E、F間的距離為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC擺放在平面直角坐標(biāo)系中,點(diǎn)A軸上,點(diǎn)C軸上,OA=8,OC=6.

1)求直線AC的表達(dá)式

2)若直線與矩形OABC有公共點(diǎn),求的取值范圍;

3)若點(diǎn)O與點(diǎn)B位于直線兩側(cè),直接寫出的取值范圍。

查看答案和解析>>

同步練習(xí)冊(cè)答案