【題目】如圖,MN是⊙O的直徑,點(diǎn)A是半圓上的三等分點(diǎn),點(diǎn)B是劣弧AN的中點(diǎn),點(diǎn)P是直徑MN上一動(dòng)點(diǎn).若MN=2,AB=1,則△PAB周長的最小值是( 。
A. 2+1 B. +1 C. 2 D. 3
【答案】D
【解析】
作點(diǎn)A關(guān)于MN的對(duì)稱點(diǎn)A′,連接A′B,交MN于點(diǎn)P,連接OA′,OA,OB,PA,AA′.所以點(diǎn)A與A′關(guān)于MN對(duì)稱,點(diǎn)A是半圓上的一個(gè)三等分點(diǎn),所以∠A′ON=∠AON=60°,PA=PA′,OA=OA′=,因?yàn)辄c(diǎn)B是弧AN的中點(diǎn),所以∠BON=30°,∠A′OB=∠A′ON+∠BON=90°,再由勾股定理求出A′B=2,最后即可求解.
作點(diǎn)A關(guān)于MN的對(duì)稱點(diǎn)A′,連接A′B,交MN于點(diǎn)P,連接OA′,OA,OB,PA,AA′.
∵點(diǎn)A與A′關(guān)于MN對(duì)稱,點(diǎn)A是半圓上的一個(gè)三等分點(diǎn),
∴∠A′ON=∠AON=60°,PA=PA′,
∵點(diǎn)B是弧AN的中點(diǎn),
∴∠BON=30°,
∴∠A′OB=∠A′ON+∠BON=90°,
又∵OA=OA′=,
∴A′B=2.
∴PA+PB=PA′+PB=A′B=2.
∴△PAB周長的最小值=PA+PB+AB=2+1=3
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了解該校學(xué)生的課余活動(dòng)情況,抽樣調(diào)查了部分同學(xué),將所得數(shù)據(jù)處理后,制成折線統(tǒng)計(jì)圖(部分)和扇形統(tǒng)計(jì)圖(部分)如下:
(1)在這次研究中,一共調(diào)查了 名學(xué)生.
(2)補(bǔ)全頻數(shù)分布折線圖;
(3)該校共有2200名學(xué)生,估計(jì)該校學(xué)生中愛好閱讀的人數(shù)大約是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道:在小學(xué)已經(jīng)學(xué)過“正方形的四條邊都相等,正方形的四個(gè)內(nèi)角都是直角”,試?yán)蒙鲜鲋R(shí),并結(jié)合已學(xué)過的知識(shí)解答下列問題:
如圖1,在正方形ABCD中,G是射線DB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)G不與點(diǎn)D重合),以CG為邊向下作正方形CGEF.
(1)當(dāng)點(diǎn)G在線段BD上時(shí),求證:;
(2)連接BF,試探索:BF,BG與AB的數(shù)量關(guān)系,并說明理由;
(3)若AB=a(a是常數(shù)),如圖2,過點(diǎn)F作FT∥BC,交射線DB于點(diǎn)T,問在點(diǎn)G的運(yùn)動(dòng)過程中,GT的長度是否會(huì)隨著G點(diǎn)的移動(dòng)而變化?若不變,請(qǐng)求出GT的長度;若變化,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P在一次函數(shù)y=kx+b(k,b為常數(shù),且k<0,b>0)的圖象上,將點(diǎn)P向左平移1個(gè)單位,再向上平移2個(gè)單位得到點(diǎn)Q,點(diǎn)Q也在該函數(shù)y=kx+b的圖象上.
(1)k的值是 ;
(2)如圖,該一次函數(shù)的圖象分別與x軸、y軸交于A,B兩點(diǎn),且與反比例函數(shù)y=圖象交于C,D兩點(diǎn)(點(diǎn)C在第二象限內(nèi)),過點(diǎn)C作CE⊥x軸于點(diǎn)E,記S1為四邊形CEOB的面積,S2為△OAB的面積,若=,則b的值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀下面的內(nèi)容,再解答問題.
(閱讀)例題:求多項(xiàng)式m2 + 2mn+2n2-6n+13的最小值.
解;m2+2mn+2n2-6n+ 13= (m2 +2mn+n2)+ (n2-6n+9)+4= (m+n)2+(n-3)2+4,
∵(m+n)20, (n-3)20
∴多項(xiàng)式m2+2mn+2n2-6n+ 13的最小值是4.
(解答問題)
(1)請(qǐng)寫出例題解答過程中因式分解運(yùn)用的公式是
(2)己知a、b、c是△ABC的三邊,且滿足a2+b2=l0a+8b-41,求第三邊c的取值范圍;
(3)求多項(xiàng)式-2x2+4xy-3y2 -3y2-6y+7 的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C,D是⊙O上的點(diǎn),且OC∥BD,AD分別與BC,OC相交于點(diǎn)E,F(xiàn),則下列結(jié)論:①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的____(把你認(rèn)為正確結(jié)論的序號(hào)都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,CD切⊙O于點(diǎn)C,與BA的延長線交于點(diǎn)D,OE⊥AB交⊙O于點(diǎn)E,連接CA、CE、CB,CE交AB于點(diǎn)G,過點(diǎn)A作AF⊥CE于點(diǎn)F,延長AF交BC于點(diǎn)P.
(Ⅰ)求∠CPA的度數(shù);
(Ⅱ)連接OF,若AC=,∠D=30°,求線段OF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O的直徑,點(diǎn)D是半圓O上一點(diǎn),點(diǎn)C是 的中點(diǎn),CE⊥AB于點(diǎn)E,過點(diǎn)D的切線交EC的延長線于點(diǎn)G,連接AD,分別交CE、CB于點(diǎn)P、Q,連接AC.
(1)求證:GP=GD;
(2)求證:P是線段AQ的中點(diǎn);
(3)連接CD,若CD=2,BC=4,求⊙O的半徑和CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),當(dāng)x≥2時(shí),y隨x的增大而增大,且2≤x≤1時(shí),y的最大值為9,則a的值為
A. 1或2 B. 或
C. D. 1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com