【題目】已知正方形的內(nèi)切圓O半徑為2,如圖,正方形的四個角上分別有一個直角三角形,如果直角三角形的第三邊與圓O相切且平行于對角線.則陰影部分的面積為( 。
A. 32﹣32﹣4πB. C. 1D. 16﹣4π
【答案】A
【解析】
連接OA、OB,作BI⊥OA于點I,作OM⊥AB于點M,求得△AOB的面積,則正八邊形的面積即可求得,然后減去圓的面積即可求解.
解:連接OA、OB、JL、KM,作BI⊥OA于點I,作OM⊥AB于點M.
∵GF∥KN∥BC,AH∥JL∥DE,
∴△JGF, △KAH,CLB,END都是等腰直角三角形且全等,
∴∠HGF=∠GFE=∠FED=∠EDC=∠DCB=∠CBA=∠BAH=∠AHG=135°,
由切線長定理可知,GF=EF=DE=CD=BC=AB=AH=GH,
∴八邊形ABCDEFGH是正八邊形.
則∠AOB= =45°,
∴△OBI是等腰直角三角形,
設(shè)AM=BM=x,則OA=OB=,OI=BI=,
∵,
∴,
∴,(舍去),
∴AB=,
則S△AOB=ABOM=×()×2=4-4,
則正八邊形ABCDEFGH的面積是8(4-4)=32-32.
⊙O的面積是:4π,
則陰影部分的面積為:32-32-4π.
故選:A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,點F 是CD延長線上的一點,且AD平分∠BDF,AE⊥CD于點E.
⑴ 求證:AB=AC.
⑵ 若BD=11,DE=2,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對垃圾進行分類投放,能提高垃圾處理和再利用的效率,減少污染,保護環(huán)境.為了檢查垃圾分類的落實情況,某居委會成立了甲、乙兩個檢查組,采取隨機抽查的方式分別對轄區(qū)內(nèi)的A,B,C,D四個小區(qū)進行檢查,并且每個小區(qū)不重復(fù)檢查.
(1)甲組抽到A小區(qū)的概率是多少;
(2)請用列表或畫樹狀圖的方法求甲組抽到A小區(qū),同時乙組抽到C小區(qū)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD和正方形CGFE的頂點C,D,E在同一條直線上,頂點B,C,G在同一條直線上.O是EG的中點,∠EGC的平分線GH過點D,交BE于點H,連接FH交EG于點M,連接OH.以下四個結(jié)論:①GH⊥BE;②△EHM∽△GHF;③﹣1;④=2﹣,其中正確的結(jié)論是( 。
A. ①②③B. ①②④C. ①③④D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為某海域示意圖,其中燈塔D的正東方向有一島嶼C.一艘快艇以每小時20nmile的速度向正東方向航行,到達A處時得燈塔D在東北方向上,繼續(xù)航行0.3h,到達B處時測得燈塔D在北偏東30°方向上,同時測得島嶼C恰好在B處的東北方向上,此時快艇與島嶼C的距離是多少?(結(jié)果精確到1nmile.參考數(shù)據(jù):≈1.41,≈1.73,≈2.45)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD是⊙O的內(nèi)接正方形,延長BA到E,使AE=AB,連接ED.
(1)求證:直線ED是⊙O的切線;
(2)連接EO交AD于點F,求證:EF=2FO.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AD與BC是⊙O的直徑,延長線段AC至點G,使AG=AD,連接DG交⊙O于點E,EF∥AB交AG于點F.
(1)求證:EF與⊙O相切.
(2)若EF=2,AC=4,求扇形OAC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標系中,一次函數(shù)y=mx+n(m≠0)和二次函數(shù)y=ax2+bx+c(a≠0)的圖象交于A(﹣3,0)和B兩點,拋物線與x軸交于A、C兩點,且C的橫坐標在0到1之間(不含端點),下列結(jié)論正確的是( )
A. abc<0 B. 3a﹣b>0 C. 2a﹣b+m<0 D. a﹣b>2m﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,點O在AB上,以點O為圓心,OA為半徑的圓恰好經(jīng)過點D,分別交AC、AB于點E. F.
(1)試判斷直線BC與⊙O的位置關(guān)系,并說明理由;
(2)若BD=2,BF=2,求⊙O的半徑.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com