【題目】根據(jù)李飛與劉亮射擊訓(xùn)練的成績(jī)繪制了如圖所示的折線統(tǒng)計(jì)圖.

根據(jù)圖所提供的信息,若要推薦一位成績(jī)較穩(wěn)定的選手去參賽,應(yīng)推薦( 。

A. 李飛或劉亮 B. 李飛 C. 劉亮 D. 無法確定

【答案】C

【解析】根據(jù)折線統(tǒng)計(jì)圖得出兩人射擊成績(jī),再計(jì)算出兩人成績(jī)的方差,據(jù)此即可作出判斷.

李飛的成績(jī)?yōu)?/span>5、8、9、7、8、9、10、8、9、7,

則李飛成績(jī)的平均數(shù)為=8,

所以李飛成績(jī)的方差為×[(5﹣8)2+2×(7﹣8)2+3×(8﹣8)2+3×(9﹣8)2+(10﹣8)2]=1.8;

劉亮的成績(jī)?yōu)?/span>7、8、8、9、7、8、8、9、7、9,

則劉亮成績(jī)的平均數(shù)為=8,

∴劉亮成績(jī)的方差為×[3×(7﹣8)2+4×(8﹣8)2+3×(9﹣8)2]=0.6,

0.6<1.8,

∴應(yīng)推薦劉亮,

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,一次函數(shù)y=kx﹣1的圖象經(jīng)過點(diǎn)A(3,m)(m>0),與y軸交于點(diǎn)B.點(diǎn)C在線段AB上,且BC=2AC,過點(diǎn)Cx軸的垂線,垂足為點(diǎn)D.若AC=CD.

(1)求這個(gè)一次函數(shù)的表達(dá)式;

(2)已知一開口向下、以直線CD為對(duì)稱軸的拋物線經(jīng)過點(diǎn)A,它的頂點(diǎn)為P,若過點(diǎn)P且垂直于AP的直線與x軸的交點(diǎn)為Q(﹣,0),求這條拋物線的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BPABC中∠ABC的平分線,CP是∠ACB的外角的平分線,如果∠ABP=20°,∠ACP=50°,則∠A+P=

A.70°B.80°C.90°D.100°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上點(diǎn)表示的有理數(shù)為,點(diǎn)表示的有理數(shù)為.點(diǎn)從點(diǎn)出發(fā)以每秒個(gè)單位長(zhǎng)度的速度由運(yùn)動(dòng),同時(shí),點(diǎn)從點(diǎn)出發(fā)以每秒個(gè)單位長(zhǎng)度的速度由運(yùn)動(dòng),當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí)兩點(diǎn)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為(單位:秒)

1)求時(shí),求點(diǎn)和點(diǎn)表示的有理數(shù);

2)求點(diǎn)與點(diǎn)第一次重合時(shí)的值;

3)當(dāng)的值為多少時(shí),點(diǎn)表示的有理數(shù)與點(diǎn)表示的有理數(shù)距離是個(gè)單位長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一次函數(shù)y=kx+4圖象交直線OA于點(diǎn)A(1,2),交y軸于點(diǎn)B,點(diǎn)C為坐標(biāo)平面內(nèi)一點(diǎn).

(1)k;

(2)若以OA、B、C為頂點(diǎn)的四邊形為菱形,則C點(diǎn)坐標(biāo)為 ;

(3)在直線AB上找點(diǎn)D,使OAD的面積與((2)中菱形面積相等,則D點(diǎn)坐標(biāo)為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司計(jì)劃購(gòu)買A,B兩種型號(hào)的機(jī)器人搬運(yùn)材料.已知A型機(jī)器人比B型機(jī)器人每小時(shí)多搬運(yùn)30kg材料,且A型機(jī)器人搬運(yùn)1000kg材料所用的時(shí)間與B型機(jī)器人搬運(yùn)800kg材料所用的時(shí)間相同.

(1)求A,B兩種型號(hào)的機(jī)器人每小時(shí)分別搬運(yùn)多少材料;

(2)該公司計(jì)劃采購(gòu)A,B兩種型號(hào)的機(jī)器人共20臺(tái),要求每小時(shí)搬運(yùn)材料不得少于2800kg,則至少購(gòu)進(jìn)A型機(jī)器人多少臺(tái)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠l=2,DEBC,ABBC,那么∠A=3嗎?說明理由.

解:∠A=3,理由如下:

DEBC,ABBC(已知)

∴∠DEB=ABC=90° (   

∴∠DEB+(   )=180°

DEAB (   

∴∠1=A(   

2=3(   

∵∠l=2(已知)

∴∠A=3(   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將三角板ABC與三角板ADE擺放在一起;如圖2,其中∠ACB30°,∠DAE45°,∠BAC=∠D90°.固定三角板ABC,將三角板ADE繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn),記旋轉(zhuǎn)角∠CAEα(0°α180°)

(1)當(dāng)α   度時(shí),ADBC,并在圖3中畫出相應(yīng)的圖形;

(2)在旋轉(zhuǎn)過程中,試探究∠CAD與∠BAE之間的關(guān)系;

(3)當(dāng)△ADE旋轉(zhuǎn)速度為5°/秒時(shí),且它的一邊與△ABC的某一邊平行(不共線)時(shí),直接寫出時(shí)間t的所有值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,EAC的中點(diǎn),點(diǎn)A、Bx軸上.若函數(shù)(x>0) 的圖像過D、E兩點(diǎn),則矩形ABCD的面積為________

查看答案和解析>>

同步練習(xí)冊(cè)答案