【題目】如圖,在數(shù)軸上點(diǎn)表示的有理數(shù)為,點(diǎn)表示的有理數(shù)為.點(diǎn)從點(diǎn)出發(fā)以每秒個(gè)單位長(zhǎng)度的速度由運(yùn)動(dòng),同時(shí),點(diǎn)從點(diǎn)出發(fā)以每秒個(gè)單位長(zhǎng)度的速度由運(yùn)動(dòng),當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí)兩點(diǎn)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為(單位:秒).
(1)求時(shí),求點(diǎn)和點(diǎn)表示的有理數(shù);
(2)求點(diǎn)與點(diǎn)第一次重合時(shí)的值;
(3)當(dāng)的值為多少時(shí),點(diǎn)表示的有理數(shù)與點(diǎn)表示的有理數(shù)距離是個(gè)單位長(zhǎng)度.
【答案】(1)點(diǎn)P表示的數(shù)為: -2,點(diǎn)Q表示的數(shù)為: 4;(2)4;(3)當(dāng)t的值為3,5,9時(shí),點(diǎn)P表示的有理數(shù)與點(diǎn)Q表示的有理數(shù)距離是3個(gè)單位長(zhǎng)度.
【解析】
(1)根據(jù)題意可以得到當(dāng)t=2時(shí),點(diǎn)P和點(diǎn)Q表示的有理數(shù);
(2)根據(jù)題意可以列出相遇關(guān)于t的方程,從而可以求得t的值;
(3)根據(jù)題意可以列出相應(yīng)的方程,從而可以解答本題.
(1)當(dāng)t=2時(shí),
點(diǎn)P表示的數(shù)為:-6+2×2=-6+4=-2,
點(diǎn)Q表示的數(shù)為:6-1×2=6-2=4;
(2)[6-(-6)]÷(1+2)
=(6+6)÷3
=12÷3
=4,
答:點(diǎn)P與點(diǎn)Q第一次重合時(shí)的t值為4;
(3)點(diǎn)P和點(diǎn)Q第一相遇前,
(1+2)t=[6-(-6)]-3,
解得,t=3;
當(dāng)點(diǎn)P和點(diǎn)Q相遇后,點(diǎn)P到達(dá)點(diǎn)B前,
(1+2)t=[6-(-6)]+3,
解得,t=5;
當(dāng)點(diǎn)P從點(diǎn)B向點(diǎn)A運(yùn)動(dòng)時(shí),
t-3=2t-[6-(-6)],
解得,t=9;
由上可得,當(dāng)t的值為3,5,9時(shí),點(diǎn)P表示的有理數(shù)與點(diǎn)Q表示的有理數(shù)距離是3個(gè)單位長(zhǎng)度.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,AD=4,點(diǎn)E、F分別在線段AD、AB上,將△AEF沿EF翻折,使得點(diǎn)A落在矩形ABCD內(nèi)部的P點(diǎn),連接PD,當(dāng)△PDE是等邊三角形時(shí),BF的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一幅三角板拼成如圖所示的圖形,過(guò)點(diǎn)C作CF平分∠DCE交DE于點(diǎn)F.
(1)求證:CF∥AB.
(2)求∠DFC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD為△ABC的中線,BE為△ABD的中線.
(1)若∠ABE=15°,∠BAD=40°,則∠BED=________°;
(2)請(qǐng)?jiān)趫D中作出△BED中BD邊上的高EF;
(3)若△ABC的面積為40,BD=5,則點(diǎn)E到BC邊的距離為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O是直線AB上一點(diǎn),OD平分∠BOC,∠COE=90°.
(1)若∠AOC=36°,求∠DOE的度數(shù);
(2)若∠AOC=α,則∠DOE=________.(用含α的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O.已知∠BOD=75°,OE把∠AOC分成兩個(gè)角,且∠AOE:∠EOC=2:3.
(1)求∠AOE的度數(shù);
(2)若OF平分∠BOE,問(wèn):OB是∠DOF的平分線嗎?試說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)李飛與劉亮射擊訓(xùn)練的成績(jī)繪制了如圖所示的折線統(tǒng)計(jì)圖.
根據(jù)圖所提供的信息,若要推薦一位成績(jī)較穩(wěn)定的選手去參賽,應(yīng)推薦( 。
A. 李飛或劉亮 B. 李飛 C. 劉亮 D. 無(wú)法確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)已知等腰三角形的一邊長(zhǎng)等于8cm,一邊長(zhǎng)等于9cm,求它的周長(zhǎng);
(2)等腰三角形的一邊長(zhǎng)等于6cm,周長(zhǎng)等于28cm,求其他兩邊的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,雯雯開(kāi)了一家品牌手機(jī)體驗(yàn)店,想在體驗(yàn)區(qū)(圖1陰影部分)擺放圖2所示的正六邊形桌子若干張.體驗(yàn)店平面圖是長(zhǎng)9米、寬7米的矩形,通道寬2米,桌子的邊長(zhǎng)為1米;擺放時(shí)要求桌子至少離墻1米,且有邊與墻平行,桌子之間的最小距離至少1米,則體驗(yàn)區(qū)可以擺放桌子( )
A. 4張 B. 5張 C. 6張 D. 7張
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com