【題目】如圖,反比例函數(shù)y(x0)的圖象經(jīng)過矩形OABC對角線的交點(diǎn)M,分別與AB、BC相交于點(diǎn)D、E.若四邊形ODBE的面積為9,則k的值為(

A. 3B. 6C. 9D. 4

【答案】A

【解析】

本題可從反比例函數(shù)圖象上的點(diǎn)E、M、D入手,分別找出△OCE、△OAD、矩形OABC的面積與|k|的關(guān)系,列出等式求出k值.

解:由題意得:E、M、D位于反比例函數(shù)圖象上,則SOCE,SOAD,

過點(diǎn)MMGy軸于點(diǎn)G,作MNx軸于點(diǎn)N,則S四邊形ONMG|k|,

又∵M為矩形ABCO對角線的交點(diǎn),

S矩形ABCO4S四邊形ONMG4|k|

由于函數(shù)圖象在第一象限,k0,則94k,

解得:k3

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C=90°,AC=BC=3cm.動點(diǎn)P從點(diǎn)A出發(fā),以cm/s的速度沿AB方向運(yùn)動到點(diǎn)B.動點(diǎn)Q同時(shí)從點(diǎn)A出發(fā),以1cm/s的速度沿折線ACCB方向運(yùn)動到點(diǎn)B.設(shè)APQ的面積為y(cm2).運(yùn)動時(shí)間為x(s),則下列圖象能反映yx之間關(guān)系的是 ( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將ABC繞著點(diǎn)C順時(shí)針旋轉(zhuǎn)50°后得到ABC.若=40°,=110°,則∠的度數(shù)為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一商店銷售某種商品,平均每天可售出20件,每件盈利40.為了擴(kuò)大銷售,增加盈利,該店采取了降價(jià)措施.在每件盈利不少于25元的前提下,經(jīng)過一段時(shí)間銷售,發(fā)現(xiàn)銷售單價(jià)每降低1元,平均每天可多售出2.

1)若降價(jià)元,則平均每天銷售數(shù)量為___________件(用含的代數(shù)式表示);

2)當(dāng)每件商品降價(jià)多少元時(shí),該商店每天銷售利潤為1050元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,在五邊形ABCDE中,ABAE,∠B=∠BAE=∠AED90°,∠CAD45°,試猜想BC,CD,DE之間的數(shù)量關(guān)系.小明經(jīng)過仔細(xì)思考,得到如下解題思路:

將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△AEF,由∠B=∠AED90°,得∠DEF180°,即點(diǎn)D,E,F三點(diǎn)共線,易證△ACD   ,故BC,CD,DE之間的數(shù)量關(guān)系是   

2)如圖2,在四邊形ABCD中,ABAD,∠ABC+D180°,點(diǎn)EF分別在邊CB,DC的延長線上,∠EAFBAD,連接EF,試猜想EF,BE,DF之間的數(shù)量關(guān)系,并給出證明.

3)如圖3,在△ABC中,∠BAC90°,ABAC,點(diǎn)D,E均在邊BC上,且∠DAE45°,若BD2,CE3,則DE的長為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等邊三角形ABC邊長為1,△ABC的三條中位線組成△A1B1C1,△A1B1C1的三條中位線組成△A2B2C2,依此進(jìn)行下去得到△A5B5C5的周長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖拋物線yax2+bx+cy軸交于點(diǎn)C,與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè).點(diǎn)A的坐標(biāo)為(﹣40),B的坐標(biāo)為(10),且OC4OB

1)求拋物線的解析式;

2)若點(diǎn)D是線段AC下方拋物線上的動點(diǎn),求三角形ACD面積的最大值;

3)若點(diǎn)Ex軸上,點(diǎn)P在拋物線上.是否存在以AC,EP為頂點(diǎn)且以AC為一邊的平行四邊形?若存在,直接寫出P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,直角的頂點(diǎn)上,分別交、于點(diǎn)、,繞點(diǎn)任意旋轉(zhuǎn).當(dāng)時(shí),的值為________;當(dāng)時(shí),________.(用含的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)平面內(nèi),為原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,直線軸(如圖所示).點(diǎn)與點(diǎn)關(guān)于原點(diǎn)對稱,直線為常數(shù))經(jīng)過點(diǎn),且與直線相交于點(diǎn),聯(lián)結(jié)

1)求的值和點(diǎn)的坐標(biāo);

2)設(shè)點(diǎn)軸的正半軸上,若是等腰三角形,求點(diǎn)的坐標(biāo);

查看答案和解析>>

同步練習(xí)冊答案