【題目】如圖,在平面直角坐標(biāo)系中,已知矩形OABC的頂點(diǎn)B(6,8),動點(diǎn)M,N同時從O點(diǎn)出發(fā),點(diǎn)M沿射線OA方向以每秒1個單位的速度運(yùn)動,點(diǎn)N沿線段OB方向以每秒0.6個單位的速度運(yùn)動,當(dāng)點(diǎn)N到達(dá)點(diǎn)B時,點(diǎn)M,N同時停止運(yùn)動,連接MN,設(shè)運(yùn)動時間為t(秒).
(1)求證△ONM~△OAB;
(2)當(dāng)點(diǎn)M是運(yùn)動到點(diǎn)時,若雙曲線的圖象恰好過點(diǎn)N,試求k的值;
(3)△MNB與△OAB能否相似?若能試求出所有t的值,若不能請說明理由.
【答案】(1)見解析;(2)k=12;(3)能,t=6s或s時,△BMN與△AOB相似.
【解析】
(1)用含t的式子表示OM,ON,可證得,即可解決問題;
(2)根據(jù)M點(diǎn)坐標(biāo)可求得運(yùn)動時間,進(jìn)而求得N點(diǎn)坐標(biāo),再利用待定系數(shù)法求解析式即可解決問題;
(3)分兩種情形解決)①當(dāng)點(diǎn)M與點(diǎn)A重合時,△BNM∽△BAO,此時求得t.②當(dāng)OM=BM時,△MBN∽△BOA,此時點(diǎn)M在線段OB 的垂直平分線上,可求得此時t值
解:(1)證明:由題意:OA=6,AB=8,OB=10,OM=t,ON=0.6t,
∴,
∵∠MON=∠AOB,
∴△ONM∽△OAB.
(2)當(dāng)OM=時,ON=5,
∴ON=NB,
∴N(3,4),
∵雙曲線的圖象恰好過點(diǎn)N,
∴k=12.
(3)①當(dāng)點(diǎn)M與點(diǎn)A重合時,△BNM∽△BAO,此時t=6s.
②當(dāng)OM=BM時,∠MBN=∠AOB,∵∠OAB=∠MNB=90°,
∴△MBN∽△BOA,
此時點(diǎn)M在線段OB 的垂直平分線上,
由(2)可知,此時OM=,t=s,
綜上所述,當(dāng)t=6s或s時,△BMN與△AOB相似.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若點(diǎn)(﹣2,y1)、(﹣1,y2)和(1,y3)分別在反比例函數(shù)y=﹣的圖象上,則下列判斷中正確的是( 。
A. y1<y2<y3 B. y3<y1<y2 C. y2<y3<y1 D. y3<y2<y1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把所有正偶數(shù)從小到大排列,并按如下規(guī)律分組:
第一組:2,4;
第二組:6,8,10,12;
第三組:14,16,18,20,22,24
第四組:26,28,30,32,34,36,38,40
……
則現(xiàn)有等式Am=(i,j)表示正偶數(shù)m是第i組第j個數(shù)(從左到右數(shù)),如A10=(2,3),則A2018=( )
A. (31,63) B. (32,17) C. (33,16) D. (34,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩家綠化養(yǎng)護(hù)公司各自推出了校園綠化養(yǎng)護(hù)服務(wù)的收費(fèi)方案.
甲公司方案:每月的養(yǎng)護(hù)費(fèi)用y(元)與綠化面積x(平方米)的關(guān)系如圖所示.
乙公司方案:綠化面積不超過1000平方米時,每月收取費(fèi)用5500元;綠化面積超過1000平方米時,超過的部分每月每平方米加收4元.
(1)求如圖所示的y與x的函數(shù)表達(dá)式;
(2)如果某學(xué)校目前的綠化面積是1200平方米.那么選擇哪家公司的服務(wù)比較劃算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸上點(diǎn)A表示數(shù)字6,點(diǎn)B表示數(shù)字﹣4
(1)畫數(shù)軸,并在數(shù)軸上標(biāo)出點(diǎn)A與點(diǎn)B;
(2)數(shù)軸上一動點(diǎn)C從點(diǎn)A出發(fā),沿數(shù)軸的負(fù)方向以每秒2個單位長度的速度移動,經(jīng)過4秒到達(dá)點(diǎn)E,數(shù)軸上另一動點(diǎn)D從點(diǎn)B出發(fā),沿數(shù)軸的正方向以每秒1個單位長度的速度移動,經(jīng)過8秒到達(dá)點(diǎn)F,求出點(diǎn)E與點(diǎn)F所表示的數(shù),并在第(1)題的數(shù)軸上標(biāo)出點(diǎn)E,點(diǎn)F;
(3)在第(2)題的條件下,在數(shù)軸上找出點(diǎn)H,使點(diǎn)H到點(diǎn)E距離與點(diǎn)H到點(diǎn)F距離之和為8,請在數(shù)軸上直接標(biāo)出點(diǎn)H.(不需寫出求解過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】江津區(qū)某玩具商城在“六一”兒童節(jié)來臨之際,以49元/個的價格購進(jìn)某種玩具進(jìn)行銷售,并預(yù)計當(dāng)售價為50元/個時,每天能售出50個玩具,且在一定范圍內(nèi),當(dāng)每個玩具的售價平均每提高0.5元時,每天就會少售出3個玩具。
(1)若玩具售價不超過60元/個,每天售出玩具總成本不高于686元,預(yù)計每個玩具售價的取值范圍;
(2)在實(shí)際銷售中,玩具城以(1)中每個玩具的最低售價及相應(yīng)的銷量為基礎(chǔ),進(jìn)一步調(diào)整了銷售方案,將每個玩具的售價提高了%,從而每天的銷售量降低了%,當(dāng)每天的銷售利潤為147元時,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形紙片ABCD,點(diǎn)E,F分別在邊AB,CD上,連接EF.將∠BEF對折,點(diǎn)B落在直線EF上的點(diǎn)B′處,得折痕EM;將∠AEF對折,點(diǎn)A落在直線EF上的點(diǎn)A′處,得折痕EN.
(1)判斷直線EN,ME的位置關(guān)系,并說明理由;
(2)設(shè)∠MEN的平分線EP交邊CD于點(diǎn)P,∠MEN的一條三等分線EQ交邊CD于點(diǎn)Q.求∠PEQ的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)的圖象交于A(-4,n),B(2,-4)兩點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求直線AB與x軸的交點(diǎn)C的坐標(biāo)及△AOB的面積;
(3)根據(jù)圖象直接寫出關(guān)于x的方程的解及不等式的解集.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com