【題目】閱讀:能夠成為直角三角形三條邊長(zhǎng)的三個(gè)正整數(shù)a,b,c,稱為勾股數(shù).世界上第一次給出勾股數(shù)通解公式的是我國古代數(shù)學(xué)著作《九章算術(shù)》,其勾股數(shù)組公式為: 其中m>n>0,m,n是互質(zhì)的奇數(shù).
應(yīng)用:當(dāng)n=1時(shí),求有一邊長(zhǎng)為5的直角三角形的另外兩條邊長(zhǎng).
【答案】12,13或3,4.
【解析】試題分析:由n=1,得到a= (m2﹣1)①,b=m②,c=(m2+1)③,根據(jù)直角三角形有一邊長(zhǎng)為5,分情況,列方程即可得到結(jié)論.
試題解析:當(dāng)n=1,a=(m2﹣1)①,b=m②,c=(m2+1)③,
∵直角三角形有一邊長(zhǎng)為5,
∴Ⅰ、當(dāng)a=5時(shí),(m2﹣1)=5,解得:m=±(舍去),
Ⅱ、當(dāng)b=5時(shí),即m=5,代入①③得,a=12,c=13,
Ⅲ、當(dāng)c=5時(shí),(m2+1)=5,解得:m=±3,
∵m>0,
∴m=3,代入①②得,a=4,b=3,
綜上所述,直角三角形的另外兩條邊長(zhǎng)分別為12,13或3,4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在學(xué)習(xí)等邊三角形時(shí)發(fā)現(xiàn)了直角三角形的一個(gè)性質(zhì):直角三角形中,角所對(duì)的直角邊等于斜邊的一半。小明同學(xué)對(duì)以上結(jié)論作了進(jìn)一步探究.如圖1,在中,,則:.
探究結(jié)論:(1)如圖1,是邊上的中線,易得結(jié)論:為________三角形.
(2)如圖2,在中,是邊上的中線,點(diǎn)是邊上任意一點(diǎn),連接,在邊上方作等邊,連接.試探究線段與之間的數(shù)量關(guān)系,寫出你的猜想加以證明.
拓展應(yīng)用:如圖3,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為,點(diǎn)是軸正半軸上的一動(dòng)點(diǎn),以為邊作等邊,當(dāng)點(diǎn)在第一象內(nèi),且時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣(x﹣a)(x﹣b),其中a<b,m、n(m<n)是方程1﹣(x﹣a)(x﹣b)=0的兩個(gè)根,則實(shí)數(shù)a、b、m、n的大小關(guān)系是( 。
A. a<m<n<b B. m<a<b<n C. a<m<b<n D. m<a<n<b
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是“求作∠AOB的角平分線”的尺規(guī)作圖過程.
已知:如圖,鈍角∠AOB.求作:∠AOB的角平分線.
作法:
①在OA和OB上,分別截取OD、OE,使OD=OE;
②分別以D、E為圓心,大于的長(zhǎng)為半徑作弧,在∠AOB內(nèi),兩弧交于點(diǎn)C;
③作射線OC.
所以射線OC就是所求作的∠AOB的角平分線.
在該作圖中蘊(yùn)含著幾何的證明過程:
由①可得:OD=OE
由②可得:_________________
由③可知:OC=OC
∴______≌_________(依據(jù):________________________)
∴可得∠COD=∠COE(全等三角形對(duì)應(yīng)角相等)
即OC就是所求作的∠AOB的角平分線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】信息1:我們已經(jīng)學(xué)完了解分式方程,它的一般步驟為:確定最簡(jiǎn)公分母、化為整式方程、求出整式方程的解、進(jìn)行檢驗(yàn)(第一,代入最簡(jiǎn)公分母驗(yàn)證是否為零,第二代入分式方程的左右兩邊檢驗(yàn)是否相等)、確定分式方程的解.其中代入最簡(jiǎn)公分母驗(yàn)證這一步也就是在驗(yàn)證所有分式在取此值時(shí)是否有意義;
信息2:遇到這種特征的題目,可以兩邊同時(shí)平方得到;
信息3:遇到這種特征的題目,可以將左邊變形,得到,進(jìn)而可以得到或.
結(jié)合上述信息解決下面的問題:
問題1:如果.可得:;
問題2:解關(guān)于b的方程:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列結(jié)論:①ac>0;②a﹣b+c<0;③當(dāng)x<0時(shí),y<0;④方程ax2+bx+c=0(a≠0)有兩個(gè)大于﹣1的實(shí)數(shù)根.其中正確的結(jié)論有( )
A. ①③ B. ②③ C. ①④ D. ②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示,圖象過點(diǎn)(﹣1,0),對(duì)稱軸為直線x=2,下列結(jié)論:①4a+b=0②9a+c>3b;③8a+7b+2c>0④若點(diǎn)A(﹣3,y1),點(diǎn)B(﹣2,y2),點(diǎn)C(8,y3)在該函數(shù)圖象上,則y1<y3<y2⑤若方程a(x﹣1)(x﹣5)=﹣3的兩根為x1和x2,且x1<x2,則x1<﹣l<5<x2,其中正確的結(jié)論有( 。
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線的部分圖象如圖所示,與x軸的一個(gè)交點(diǎn)坐標(biāo)為,拋物線的對(duì)稱軸是下列結(jié)論中:
;;方程有兩個(gè)不相等的實(shí)數(shù)根;拋物線與x軸的另一個(gè)交點(diǎn)坐標(biāo)為;若點(diǎn)在該拋物線上,則.
其中正確的有
A. 5個(gè) B. 4個(gè) C. 3個(gè) D. 2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的周長(zhǎng)為19,點(diǎn)D,E在邊BC上,∠ABC的平分線垂直于AE,垂足為N,∠ACB的平分線垂直于AD,垂足為M,若BC=7,則MN的長(zhǎng)度為( 。
A. B. 2 C. D. 3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com