【題目】如圖,在ABC中,ABAC,∠BAC90°,MBC的中點(diǎn),延長(zhǎng)AM到點(diǎn)D,AEAD,∠EAD90°,CEAB于點(diǎn)F,CDDF

1)∠CAD______度;

2)求∠CDF的度數(shù);

3)用等式表示線段CDCE之間的數(shù)量關(guān)系,并證明.

【答案】(1)45;(2)90°;(3)見解析.

【解析】

1)根據(jù)等腰三角形三線合一可得結(jié)論;

2)連接DB,先證明BAD≌△CAD,得BDCDDF,則∠DBA=∠DFB=∠DCA,根據(jù)四邊形內(nèi)角和與平角的定義可得∠BAC+CDF180°,所以∠CDF90°;

3)證明EAF≌△DAF,得DFEF,由②可知,可得結(jié)論.

1)解:∵ABAC,MBC的中點(diǎn),

AMBC,∠BAD=∠CAD,

∵∠BAC90°,

∴∠CAD45°

故答案為:45

2)解:如圖,連接DB

ABAC,∠BAC90°,MBC的中點(diǎn),

∴∠BAD=∠CAD45°

∴△BAD≌△CAD

∴∠DBA=∠DCA,BDCD

CDDF,

BDDF

∴∠DBA=∠DFB=∠DCA

∵∠DFB+∠DFA180°,

∴∠DCA+∠DFA180°

∴∠BAC+∠CDF180°

∴∠CDF90°

3

證明:∵∠EAD90°,

∴∠EAF=∠DAF45°

ADAE,

∴△EAF≌△DAF

DFEF

由②可知,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店計(jì)劃一次購(gòu)進(jìn)兩種型號(hào)的手機(jī)共110部,銷售一部A型手機(jī)比銷售一部B型手機(jī)獲得的利潤(rùn)多50元,銷售相同數(shù)量的A型手機(jī)和B型手機(jī)獲得的利潤(rùn)分別為3000元和2000元,其中A型手機(jī)的進(jìn)貨量不超過B型手機(jī)的2倍,且商店最多購(gòu)進(jìn)B型手機(jī)50臺(tái).

1)求每部A型手機(jī)和B型手機(jī)的銷售利潤(rùn)分別為多少元?

2)設(shè)購(gòu)進(jìn)B型手機(jī)n部,銷售手機(jī)的總利潤(rùn)為y元,怎么進(jìn)貨才能使銷售總利潤(rùn)最大?

3)實(shí)際進(jìn)貨時(shí),廠家對(duì)B型手機(jī)出廠價(jià)下調(diào)m30m70)元.若商店保持兩種手機(jī)的售價(jià)不變,請(qǐng)?jiān)O(shè)計(jì)出手機(jī)銷售總利潤(rùn)最大的進(jìn)貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,函數(shù)x0)的圖象與直線l1yxb交于點(diǎn)A3,a2).

1)求ab的值;

2)直線l2y=-xmx軸交于點(diǎn)B,與直線l1交于點(diǎn)C,若SABC≥6,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠BAC=90°,ABAC,MBC邊的中點(diǎn),MNBCAC于點(diǎn)N,動(dòng)點(diǎn)P在線段BA上以每秒cm的速度由點(diǎn)B向點(diǎn)A運(yùn)動(dòng).同時(shí),動(dòng)點(diǎn)Q在線段AC上由點(diǎn)N向點(diǎn)C運(yùn)動(dòng),且始終保持MQMP.一個(gè)點(diǎn)到終點(diǎn)時(shí)兩個(gè)點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒(t0).

(1)求證:△PBM∽△QNM.

(2)若∠ABC=60°,AB=4cm,

①求動(dòng)點(diǎn)Q的運(yùn)動(dòng)速度;

②設(shè)△APQ的面積為S(cm2),求St的等量關(guān)系式(不必寫出t的取值范圍).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)活動(dòng)課上,老師提出了一個(gè)問題:把一副三角尺如圖擺放,直角三角尺的兩條直角邊分別垂直或平行,60°角的頂點(diǎn)在另一個(gè)三角尺的斜邊上移動(dòng),在這個(gè)運(yùn)動(dòng)過程中,有哪些變量,能研究它們之間的關(guān)系嗎?

小林選擇了其中一對(duì)變量,根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)它們之間的關(guān)系進(jìn)行了探究.

下面是小林的探究過程,請(qǐng)補(bǔ)充完整:

1)畫出幾何圖形,明確條件和探究對(duì)象;

如圖2,在RtABC中,∠C=90°,AC=BC=6cmD是線段AB上一動(dòng)點(diǎn),射線DEBC于點(diǎn)E,∠EDF=60°,射線DF與射線AC交于點(diǎn)F.設(shè)B,E兩點(diǎn)間的距離為xcmE,F兩點(diǎn)間的距離為ycm

2)通過取點(diǎn)、畫圖、測(cè)量,得到了xy的幾組值,如下表:

x/cm

0

1

2

3

4

5

6

y/cm

6.9

5.3

4.0

3.3

4.5

6

(說明:補(bǔ)全表格時(shí)相關(guān)數(shù)據(jù)保留一位小數(shù))

3)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;

4)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)DEF為等邊三角形時(shí),BE的長(zhǎng)度約為 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】超市里,某商戶先后兩次購(gòu)進(jìn)若干千克的黃瓜,第一次用了300元,第二次用了900元,但第二次的進(jìn)貨單價(jià)比第次的要高1.5元,而所購(gòu)的黃瓜數(shù)量是第一次的2倍.

1)問該商戶兩次一共購(gòu)進(jìn)了多少千克黃瓜?

2)當(dāng)商戶按每千克6元的價(jià)格賣掉了時(shí),商戶想盡快賣掉這些黃瓜,于是商戶決定將剩余的黃瓜打折銷售,請(qǐng)你幫忙算算,剩余的黃瓜至少打幾折才能使兩次所進(jìn)的黃瓜總盈利不低于360元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,河的兩岸l1l2互相平行,A、Bl1上的兩點(diǎn),C、Dl2上的兩點(diǎn),某同學(xué)在A處測(cè)得∠CAB90°,∠DAB30°,再沿AB方向走20米到達(dá)點(diǎn)E(即AE20),測(cè)得∠DEB60°.求:CD兩點(diǎn)間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC是邊長(zhǎng)為4的等邊三角形,邊AB在射線OM上,且OA6,點(diǎn)D是射線OM上的動(dòng)點(diǎn),當(dāng)點(diǎn)D不與點(diǎn)A重合時(shí),將ACD繞點(diǎn)C逆時(shí)針方向旋轉(zhuǎn)60°得到BCE,連接DE

1)如圖1,求證:CDE是等邊三角形.

2)設(shè)ODt

①當(dāng)6t10時(shí),BDE的周長(zhǎng)是否存在最小值?若存在,求出BDE周長(zhǎng)的最小值;若不存在,請(qǐng)說明理由.

②求t為何值時(shí),DEB是直角三角形(直接寫出結(jié)果即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面的兩個(gè)統(tǒng)計(jì)圖是中國(guó)互聯(lián)網(wǎng)信息中心發(fā)布的第43次《中國(guó)互聯(lián)網(wǎng)絡(luò)發(fā)展?fàn)顩r統(tǒng)計(jì)報(bào)告》的內(nèi)容,上圖為網(wǎng)民規(guī)模和互聯(lián)網(wǎng)普及率,下圖為手機(jī)網(wǎng)民規(guī)模及其占網(wǎng)民比例.根據(jù)統(tǒng)計(jì)圖提供的信息,下面推斷不合理的是( )

A.20082018年,網(wǎng)民規(guī)模和手機(jī)網(wǎng)民規(guī)模都在逐年上升

B.相比其它年份,2009年手機(jī)網(wǎng)民占整體網(wǎng)民的增長(zhǎng)比例最大

C.2008年手機(jī)上網(wǎng)人數(shù)只占全體國(guó)民的左右

D.預(yù)計(jì)2019年網(wǎng)民規(guī)模不會(huì)低于

查看答案和解析>>

同步練習(xí)冊(cè)答案