【題目】如圖,在□ABCD中,EF分別是AB、DC邊上的點(diǎn),且AE=CF,

1)求證:.

2)若DEB=90,求證四邊形DEBF是矩形.

【答案】1)利用SAS證明;(2)證明見(jiàn)解析.

【解析】

試題此題考查了平行四邊形的判定與性質(zhì)、矩形的判定以及全等三角形的判定與性質(zhì).注意有一個(gè)角是直角的平行四邊形是矩形,首先證得四邊形ABCD是平行四邊形是關(guān)鍵.(1)由在□ABCD中,AE=CF,可利用SAS判定△ADE≌△CBF.(2)由在ABCD中,且AE=CF,利用一組對(duì)邊平行且相等的四邊形是平行四邊形,可證得四邊形DEBF是平行四邊形,又由∠DEB=90°,可證得四邊形DEBF是矩形.

試題解析:(1四邊形ABCD是平行四邊形,

∴AD=CB,∠A=∠C,

△ADE△CBF中,

,

∴△ADE≌△CBFSAS).

2四邊形ABCD是平行四邊形,

∴AB=CD,AB∥CD,

∵AE=CF∴BE=DF,

四邊形ABCD是平行四邊形,

∵∠DEB=90°,四邊形DEBF是矩形.

故答案為(1)利用SAS證明;(2)證明見(jiàn)解析.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,將兩個(gè)完全相同的三角形紙片ABCDEC重合放置,其中∠C=90°,B=E=30°.

(1)操作發(fā)現(xiàn)

如圖2,固定ABC,使DEC繞點(diǎn)C旋轉(zhuǎn),當(dāng)點(diǎn)D恰好落在AB邊上時(shí),填空:

①線(xiàn)段DEAC位置關(guān)系是_________;

②設(shè)BDC的面積為S1,AEC的面積為S2,則S1S2的數(shù)量關(guān)系是____________.

(2)猜想論證

當(dāng)DEC繞點(diǎn)C旋轉(zhuǎn)到圖3所示的位置時(shí),小明猜想(1)中S1S2的數(shù)量關(guān)系仍然成立,并嘗試分別作出了BDCAECBC、CE邊上的高,請(qǐng)你證明小明的猜想.

(3)拓展探究

已知∠ABC=60°,點(diǎn)D是其角平分線(xiàn)上一點(diǎn),BD=CD=4,DE//ABBC于點(diǎn)E(如圖4).若在射線(xiàn)BA上存在點(diǎn)F,使,請(qǐng)直接寫(xiě)出相應(yīng)的BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一副三角板拼合在一起,邊重合,,,.當(dāng)點(diǎn)從點(diǎn)出發(fā)沿向下滑動(dòng)時(shí),點(diǎn)同時(shí)從點(diǎn)出發(fā)沿射線(xiàn)向右滑動(dòng).當(dāng)點(diǎn)從點(diǎn)滑動(dòng)到點(diǎn)時(shí),連接,則的面積最大值為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知一次函數(shù)y1=x+b的圖象l與二次函數(shù)y2=x2+mx+b的圖象C′都經(jīng)過(guò)點(diǎn)B0,1)和點(diǎn)C,且圖象C′過(guò)點(diǎn)A20).

1)求二次函數(shù)的最大值;

2)設(shè)使y2y1成立的x取值的所有整數(shù)和為s,若s是關(guān)于x的方程=0的根,求a的值;

3)若點(diǎn)FG在圖象C′上,長(zhǎng)度為的線(xiàn)段DE在線(xiàn)段BC上移動(dòng),EFDG始終平行于y軸,當(dāng)四邊形DEFG的面積最大時(shí),在x軸上求點(diǎn)P,使PD+PE最小,求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算

(1)

(2)(2a3b4ab3(-ab)-(2a2)2(-b2

(3)先化簡(jiǎn),再求代數(shù)式(a2b)(a2b)(a2b)24ab 的值,其中 a1,b

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,BM是∠ABC的平分線(xiàn),交CD于點(diǎn)M,且DM2,平行四邊形ABCD的周長(zhǎng)是14,則BC的長(zhǎng)等于( 。

A. 2B. 2.5C. 3D. 3.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知,,其中,滿(mǎn)足,點(diǎn)為第三象限內(nèi)一點(diǎn).

1)若到坐標(biāo)軸的距離相等,,且,求點(diǎn)坐標(biāo)

2)若,請(qǐng)用含的式子表示的面積.

3)在(2)條件下,當(dāng)時(shí),在軸上有點(diǎn),使得的面積是的面積的2倍,請(qǐng)求出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】萬(wàn)州某企業(yè)捐資購(gòu)買(mǎi)了一批重120噸的物資支援某貧困鄉(xiāng)鎮(zhèn),現(xiàn)有甲、乙、丙三種車(chē)型供選擇,每輛車(chē)的運(yùn)載能力和運(yùn)費(fèi)如下(假設(shè)每輛車(chē)均滿(mǎn)載):甲載重5噸,運(yùn)費(fèi)400元/車(chē),乙載重8噸,運(yùn)費(fèi)500元/車(chē),丙載重10噸,運(yùn)費(fèi)600元/車(chē),該公司計(jì)劃用甲、乙、丙三種車(chē)型同時(shí)參與運(yùn)送并完成任務(wù),已知它們的總輛數(shù)為15輛,要使費(fèi)用最省,所使用的甲、乙、丙三種車(chē)型的輛數(shù)分別是______。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:基本不等式a0,b0),當(dāng)且僅當(dāng)ab時(shí),等號(hào)成立.其中我們把叫做正數(shù)a、b的算術(shù)平均數(shù),叫做正數(shù)a、b的幾何平均數(shù),它是解決最大(。┲祮(wèn)題的有力工具.

例如:在x0的條件下,當(dāng)x為何值時(shí),x+有最小值,最小值是多少?

解:∵x0,0即是x+2

x+2

當(dāng)且僅當(dāng)xx1時(shí),x+有最小值,最小值為2

請(qǐng)根據(jù)閱讀材料解答下列問(wèn)題

1)若x0,函數(shù)y2x+,當(dāng)x為何值時(shí),函數(shù)有最小值,并求出其最小值.

2)當(dāng)x0時(shí),式子x2+1+2成立嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案