【題目】如圖,P為⊙O外一點(diǎn),PA、PB均為⊙O的切線,A和B是切點(diǎn),BC是直徑.
求證:(1)∠APB=2∠ABC;
(2)AC∥OP.
【答案】(1)證明見(jiàn)解析(2)見(jiàn)解析
【解析】
(1)連接OA, ∠OAP=∠OBP=90°,然后求出 PO垂直AB,從而導(dǎo)出∠APB=2∠ABC;
(2) 連接AB交PO于F,根據(jù)切線的性質(zhì)得到PO垂直平分AB,再根據(jù)直徑所對(duì)的圓周角是直角可得∠CAB=90°,于是∠CAB=∠OFB,所以AC∥OP.
(1)連接AO,
∵PA、PB均為⊙O的切線,A和B是切點(diǎn),∴∠APO=∠BPO,OA⊥AP,PA=PB,
∴∠APB=2∠APO,∠OAP=90°,PO⊥AB,∴∠OAB+∠BAP=90°,∠BAP+∠APB=90°,
∴∠OAB=∠APB,∵OA=OB,∴∠OBA=∠OAB,∴∠OBA=∠APO,∴∠APB=2∠ABC;
(2)設(shè)AB交OP于F,∵PA,PB是圓的切線,∴PA=PB,∵OA=OB ∴PO垂直平分AB.
∴∠OFB=90°.∵BC是直徑,∴∠CAB=90°.∴∠CAB=∠OFB.∴AC∥OP.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若x1,x2是關(guān)于x的方程x2+bx+c=0的兩個(gè)實(shí)數(shù)根,且|x1|+|x2|=2|k|(k是整數(shù)),則稱方程x2+bx+c=0為“偶系二次方程”.如方程x2-6x-27=0,x2-2x-8=0,x2+3x-=0,x2+6x-27=0,x2+4x+4=0都是“偶系二次方程”.判斷方程x2+x-12=0是否是“偶系二次方程”,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)一批西裝質(zhì)量抽檢情況如下表:
(1)從這批西裝中任選一套,是次品的概率是多少?
(2)若要銷售這批西裝2000件,為了方便購(gòu)買了次品西裝的顧客前來(lái)調(diào)換,至少應(yīng)進(jìn)多少件西裝?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是置于水平地面上的一個(gè)球形儲(chǔ)油罐,小敏想測(cè)量它的半徑、在陽(yáng)光下,他測(cè)得球的影子的最遠(yuǎn)點(diǎn)A到球罐與地面接觸點(diǎn)B的距離是10米(如示意圖,AB=10米);同一時(shí)刻,他又測(cè)得豎直立在地面上長(zhǎng)為1米的竹竿的影子長(zhǎng)為2米,那么,球的半徑是________米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】每年的農(nóng)歷三月初一為通州風(fēng)箏節(jié).這天,小劉同學(xué)正在江海明珠廣場(chǎng)上放風(fēng)箏,如圖風(fēng)箏從A處起飛,幾分鐘后便飛達(dá)C處,此時(shí),在AQ延長(zhǎng)線上B處的小宋同學(xué),發(fā)現(xiàn)自己的位置與風(fēng)箏和廣場(chǎng)邊旗桿PQ的頂點(diǎn)P在同一直線上.
(1)已知旗桿高為10米,若在B處測(cè)得旗桿頂點(diǎn)P的仰角為30°,A處測(cè)得點(diǎn)P的仰角為45°,試求A、B之間的距離;
(2)此時(shí),在A處背向旗桿又測(cè)得風(fēng)箏的仰角為75°,若繩子在空中視為一條線段,求繩子AC為多少米?(結(jié)果可保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C為圓心,r為半徑的圓與AB有何位置關(guān)系?(1) r=2cm;(2) r=2.4cm;(3) r=3cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣5,1),B(﹣2,2),C(﹣1,4),請(qǐng)按下列要求畫(huà)圖:
(1)將△ABC先向右平移4個(gè)單位長(zhǎng)度、再向下平移1個(gè)單位長(zhǎng)度,得到△A1B1C1,畫(huà)出△A1B1C1;
(2)畫(huà)出與△ABC關(guān)于原點(diǎn)O成中心對(duì)稱的△A2B2C2,并直接寫出點(diǎn)A2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將半徑為4,圓心角為90°的扇形BAC繞A點(diǎn)逆時(shí)針旋轉(zhuǎn)60°,點(diǎn)B、C的對(duì)應(yīng)點(diǎn)分別為點(diǎn)D、E且點(diǎn)D剛好在上,則陰影部分的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某人在D處測(cè)得山頂C的仰角為37°,向前走100米來(lái)到山腳A處,測(cè)得山坡AC的坡度為i=1:0.5,求山的高度(不計(jì)測(cè)角儀的高度,參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com