【題目】(1)如圖,AB∥CD,AE交CD于點(diǎn)C,DE⊥AE,垂足為E,∠A=30°,求∠D的度數(shù).
(2)如圖,E,C在BF上,AB=DE,AC=DF,BE=CF,試說(shuō)明:AC∥DF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,長(zhǎng)青化工廠與A、B兩地有公路、鐵路相連.這家工廠從A地購(gòu)買一批每噸1000元的原料運(yùn)回工廠,制成每噸8000元的產(chǎn)品運(yùn)到B地.已知公路運(yùn)價(jià)為1.5元/(噸·千米),鐵路運(yùn)價(jià)為1.2元/(噸·千米),且這兩次運(yùn)輸共支出公路運(yùn)輸費(fèi)15000元,鐵路運(yùn)輸費(fèi)97200元.
求:(1)該工廠從A地購(gòu)買了多少噸原料?制成運(yùn)往B地的產(chǎn)品多少噸?
(2)這批產(chǎn)品的銷售款比原料費(fèi)與運(yùn)輸費(fèi)的和多多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:
∵∠1=∠2( ),
且∠1=∠4( )
∴∠2=∠4(等量代換)
∴CE∥BF( )
∴∠ =∠3( )
又∵∠B=∠C(已知)
∴∠3=∠B( )
∴AB∥CD( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】折疊矩形紙片:
第一步,如圖1,在紙片一端折出一個(gè)正方形MBCN,再把紙片展開;
第二步,如圖2,把這個(gè)正方形對(duì)折,再把紙片展開,得矩形MAEN和ABCE;
第三步,如圖3,折出矩形ABCE的對(duì)角線EB,并把EB折到圖中所示的ED處;
第四步,如圖4,展平紙片,按所得點(diǎn)D折出DF,得矩形BFDC.
(1)若MN=2時(shí),CM=________;
(2)的值為 ________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ABC為銳角,點(diǎn)D為直線BC上一動(dòng)點(diǎn),以AD為直角邊且在AD的右側(cè)作等腰直角三角形ADE,∠DAE=90°,AD=AE.
(1)如果AB=AC,∠BAC=90°.①當(dāng)點(diǎn)D在線段BC上時(shí),如圖1,線段CE、BD的位置關(guān)系為___________,數(shù)量關(guān)系為___________
②當(dāng)點(diǎn)D在線段BC的延長(zhǎng)線上時(shí),如圖2,①中的結(jié)論是否仍然成立,請(qǐng)說(shuō)明理由.
(2)如圖3,如果AB≠AC,∠BAC≠90°,點(diǎn)D在線段BC上運(yùn)動(dòng)。探究:當(dāng)∠ACB多少度時(shí),CE⊥BC?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形ABCD是正方形,E、F分別是DC和CB的延長(zhǎng)線上的點(diǎn),且DE=BF,連接AE、AF、EF.
(1)求證:△ADE≌△ABF;
(2)若BC=8,DE=6,求△AEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB,BC,連結(jié)對(duì)角線AC,點(diǎn)O為AC的中點(diǎn),點(diǎn)E為線段BC上的一個(gè)動(dòng)點(diǎn),連結(jié)OE,將△AOE沿OE翻折得到△FOE,EF與AC交于點(diǎn)G,若△EOG的面積等于△ACE的面積的,則BE=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC的頂點(diǎn)坐標(biāo)分別為A(1,3)、B(4,2)、C(2,1).
(1)作出與△ABC關(guān)于x軸對(duì)稱的△A1B1C1, 并寫出A1、B1、C1的坐標(biāo);
(2)以原點(diǎn)O為位似中心,在原點(diǎn)的另一側(cè)畫出△A2B2C2, 使.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線與x軸相交于,C兩點(diǎn)與y軸相交于點(diǎn)B.
a0, 填“”或“” ;
若該拋物線關(guān)于直線對(duì)稱,求拋物線的函數(shù)表達(dá)式;
在的條件下,若點(diǎn)M為第三象限內(nèi)拋物線上一動(dòng)點(diǎn),點(diǎn)M的橫坐標(biāo)為的面積為求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值;
在的條件下,若點(diǎn)P是拋物線上的動(dòng)點(diǎn),點(diǎn)Q是直線上的動(dòng)點(diǎn),判斷有幾個(gè)位置能夠使以點(diǎn)P、Q、B、O為頂點(diǎn)的四邊形為平行四邊形,直接寫出相應(yīng)的點(diǎn)Q的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com