【題目】如圖,矩形AOBC的頂點(diǎn)坐標(biāo)分別為A(0,3),O(0,0),B(4,0),C(4,3),動(dòng)點(diǎn)F在邊BC上(不與B.C重合),過(guò)點(diǎn)F的反比例函數(shù)y=的圖象與邊AC交于點(diǎn)E,直線EF分別與y軸和x軸相交于點(diǎn)D和G.給出下列命題:①若k=4,則△OEF的面積為;②若k=,則點(diǎn)C關(guān)于直線EF的對(duì)稱(chēng)點(diǎn)在x軸上;③滿足題設(shè)的k的取值范圍是0<k≤12;④若DEEG=,則k=1.其中正確的命題的序號(hào)是____________(填序號(hào)).
【答案】②④
【解析】
(1)若k=4,則計(jì)算,故命題①錯(cuò)誤;
(2)如答圖所示,若k=,可證明直線EF是線段CN的垂直平分線,故命題②正確;
(3)因?yàn)辄c(diǎn)F不經(jīng)過(guò)點(diǎn)C(4,3),所以k≠12,故命題③錯(cuò)誤;
(4)求出直線EF的解析式,得到點(diǎn)D、G的坐標(biāo),然后求出線段DE、EG的長(zhǎng)度;利用算式DEEG=,求出k=1,故命題④正確.
命題①錯(cuò)誤,理由如下:
∵k=4,
∴
∴
∴S△OEF=S矩形AOBCS△AOES△BOFS△CEF
=S矩形AOBC,
∴,故命題①錯(cuò)誤;
命題②正確,理由如下:
∵
∴
∴
如答圖,過(guò)點(diǎn)E作EM⊥x軸于點(diǎn)M,則EM=3,OM=;
在線段BM上取一點(diǎn)N,使得EN=CE=,連接NF.
在Rt△EMN中,由勾股定理得:
∴
在Rt△BFN中,由勾股定理得:
∴NF=CF,
又∵EN=CE,
∴直線EF為線段CN的垂直平分線,即點(diǎn)N與點(diǎn)C關(guān)于直線EF對(duì)稱(chēng),
故命題②正確;
命題③錯(cuò)誤,理由如下:
命題④正確;理由如下:
為簡(jiǎn)化計(jì)算,不妨設(shè)k=12m,則E(4m,3),F(4,3m).
設(shè)直線EF的解析式為y=ax+b,則有
解得
∴
令x=0,得y=3m+3,∴D(0,3m+3);
令y=0,得x=4m+4,∴G(4m+4,0).
如答圖,過(guò)點(diǎn)E作EM⊥x軸于點(diǎn)M,則OM=AE=4m,EM=3.
在Rt△ADE中,AD=ODOA=3m,AE=4m,由勾股定理得:DE=5m;
在Rt△MEG中,MG=OGOM=(4m+4)4m=4,EM=3,由勾股定理得:EG=5.
∴DEEG=5m×5=25m=,解得 ,
∴k=12m=1,故命題④正確,
綜上所述,正確的命題是:②④,
故答案為:②④.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在電線桿CD上的C處引拉線CE、CF固定電線桿,拉線CE和地面所成的角∠CED=60°,在離電線桿9m的B處安置高為1.5m的測(cè)角儀AB,在A處測(cè)得電線桿上C處的仰角為30°,求拉線CE的長(zhǎng).(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線過(guò)點(diǎn),,這條拋物線的對(duì)稱(chēng)軸與x軸交于點(diǎn)C,點(diǎn)P為射線CB上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)C重合),點(diǎn)D為此拋物線對(duì)稱(chēng)軸上一點(diǎn),且CPD=.
(1)求拋物線的函數(shù)表達(dá)式;
(2)若點(diǎn)P的橫坐標(biāo)為m,△PCD的面積為S,求S與m之間的函數(shù)關(guān)系式;
(3)過(guò)點(diǎn)P作PE⊥DP,連接DE,F為DE的中點(diǎn),試求線段BF的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知P為等邊△ABC形內(nèi)一點(diǎn),且PA=3cm,PB=4 cm,PC=5 cm,則圖中△PBC的面積為________cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,已知∠BAD=120°,對(duì)角線BD長(zhǎng)為12.
(1)求菱形ABCD的周長(zhǎng);
(2)動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿A→B的方向,以每秒1個(gè)單位的速度向點(diǎn)B運(yùn)動(dòng);在點(diǎn)P出發(fā)的同時(shí),動(dòng)點(diǎn)Q從點(diǎn)D出發(fā),沿D→C→B的方向,以每秒2個(gè)單位的速度向點(diǎn)B運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t(s).
①當(dāng)PQ恰好被BD平分時(shí),試求t的值;
②連接AQ,試求:在整個(gè)運(yùn)動(dòng)過(guò)程中,當(dāng)t取怎樣的值時(shí),△APQ恰好是一個(gè)直角三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=-x+1與反比例函數(shù)y=(x<0)的圖象交于點(diǎn)A,與x軸正半軸交于點(diǎn)B,且S△AOB=1,則反比例函數(shù)解析式為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某度假村擁有客房40間,該度假村在經(jīng)營(yíng)中發(fā)現(xiàn)每間客房日租金x(元)與每日租出的客房數(shù)(y)有如下關(guān)系:
x | 200 | 220 | 260 | 280 |
y | 40 | 35 | 25 | 20 |
(1)觀察表格,用所學(xué)過(guò)的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識(shí)求出每日租出的客房數(shù)y(間)與每間客房的日租金x(元)之間的關(guān)系式.
(2)已知租出的每間客房每日需要清潔費(fèi)80元,未租出的每間客房每日需要清潔費(fèi)40元.含x(x≥200)的代數(shù)式填表:
租出的客房數(shù) | ______ | 未租出的客房數(shù) | ______ |
租出的每間客房的日收益 | ______ | 所有未租出的客房每日的清潔費(fèi) | ______ |
(3)若你是該度假村的老板,你會(huì)將每間客房的日租金定為多少元,才能使度假村獲得最大日收益?最大日收益是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知中,,,,點(diǎn)在邊上,以為圓心,為半徑的弧經(jīng)過(guò)點(diǎn)是弧上一個(gè)動(dòng)點(diǎn).
求半徑的長(zhǎng);
如果點(diǎn)是弧的中點(diǎn),聯(lián)結(jié),求的正切值;
如果平分,延長(zhǎng)交于點(diǎn),求線段的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知梯形ABCD中,AD∥BC,AB=AC,E是邊BC上的點(diǎn),且∠AED=∠CAD,DE交AC于點(diǎn)F.
(1)求證:△ABE∽△DAF;
(2)當(dāng)ACFC=AEEC時(shí),求證:AD=BE.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com