【題目】已知:A(0,1),B(2,0),C(4,3)
(1)在坐標(biāo)系中描出各點(diǎn),畫出△ABC.
(2)求△ABC的面積;
(3)設(shè)點(diǎn)P在坐標(biāo)軸上,且△ABP與△ABC的面積相等,求點(diǎn)P的坐標(biāo).

【答案】
(1)解:如圖所示:


(2)解:過點(diǎn)C向x、y軸作垂線,垂足為D、E.

∴四邊形DOEC的面積=3×4=12,△BCD的面積= =3,△ACE的面積= =4,△AOB的面積= =1.

∴△ABC的面積=四邊形DOEC的面積﹣△ACE的面積﹣△BCD的面積﹣△AOB的面積

=12﹣3﹣4﹣1=4.


(3)解:當(dāng)點(diǎn)p在x軸上時(shí),△ABP的面積= =4,即: ,解得:BP=8,

所點(diǎn)P的坐標(biāo)為(10,0)或(﹣6,0);

當(dāng)點(diǎn)P在y軸上時(shí),△ABP的面積= =4,即 ,解得:AP=4.

所以點(diǎn)P的坐標(biāo)為(0,5)或(0,﹣3).

所以點(diǎn)P的坐標(biāo)為(0,5)或(0,﹣3)或(10,0)或(﹣6,0).


【解析】(1)確定出點(diǎn)A、B、C的位置,連接AC、CB、AB即可;(2)過點(diǎn)C向x、y軸作垂線,垂足為D、E,△ABC的面積=四邊形DOEC的面積﹣△ACE的面積﹣△BCD的面積﹣△AOB的面積;(3)當(dāng)點(diǎn)p在x軸上時(shí),由△ABP的面積=4,求得:BP=8,故此點(diǎn)P的坐標(biāo)為(10,0)或(﹣6,0);當(dāng)點(diǎn)P在y軸上時(shí),△ABP的面積=4,解得:AP=4.所以點(diǎn)P的坐標(biāo)為(0,5)或(0,﹣3).
【考點(diǎn)精析】本題主要考查了三角形的面積的相關(guān)知識(shí)點(diǎn),需要掌握三角形的面積=1/2×底×高才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點(diǎn)D,E分別在邊AC,AB上,BD與CE交于點(diǎn)O,給出下列三個(gè)條件:①∠EBO=∠DCO;②BE=CD;③OB=OC.
(1)上述三個(gè)條件中,由哪兩個(gè)條件可以判定△ABC是等腰三角形?(用序號(hào)寫出所有成立的情形)
(2)請(qǐng)選擇(1)中的一種情形,寫出證明過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】幾何學(xué)中,有點(diǎn)動(dòng)成_____________,線動(dòng)成______________,_________________動(dòng)成體的原理.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,∠BCD=120°,分別延長DC、BC到點(diǎn)E,F(xiàn),使得△BCE和△CDF都是正三角形.

(1)求證:AE=AF;

(2)求∠EAF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A的坐標(biāo)為(0,1),點(diǎn)Bx軸正半軸上的一動(dòng)點(diǎn),以AB為邊作等腰直角△ABC,使∠BAC=90°,設(shè)點(diǎn)B的橫坐標(biāo)為x,點(diǎn)C的縱坐標(biāo)為y,能表示yx的函數(shù)關(guān)系的圖象大致是(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把a(bǔ)3﹣2a2+a分解因式的結(jié)果是(
A.a2(a﹣2)+a
B.a(a2﹣2a)
C.a(a+1)(a﹣1)
D.a(a﹣1)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2bxcxy的值如下表:( )

x

0.10

0.11

0.12

0.13

0.14

y

-5.6

-3.1

-1.5

0.9

1.8

ax2bxc=0的一個(gè)根的范圍是( )

A.0.10<x<0.11B.0.11<x<0.12C.0.12<x<0.13D.0.13<x<0.14

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC , D為邊BC上一點(diǎn),以AB、BD為鄰邊作平行四邊形ABDE , 連接AD、EC . 若BDCD , 求證:四邊形ADCE是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點(diǎn).

(1)求證:△ACE≌△BCD;

(2)求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案