【題目】猜想與證明:
如圖1,擺放矩形紙片ABCD與矩形紙片ECGF,使B、C、G三點(diǎn)在一條直線(xiàn)上,CE在邊CD上,連接AF,若M為AF的中點(diǎn),連接DM、ME,試猜想DM與ME的關(guān)系,并證明你的結(jié)論.
拓展與延伸:
(1)若將”猜想與證明“中的紙片換成正方形紙片ABCD與正方形紙片ECGF,其他條件不變,則DM和ME的關(guān)系為 .
(2)如圖2擺放正方形紙片ABCD與正方形紙片ECGF,使點(diǎn)F在邊CD上,點(diǎn)M仍為AF的中點(diǎn),試證明(1)中的結(jié)論仍然成立.
【答案】
(1)DM=ME,DM⊥ME
(2)
如圖2,連接AE,
∵四邊形ABCD和ECGF是正方形,
∴∠FCE=45°,∠FCA=45°,
∴AE和EC在同一條直線(xiàn)上,
在Rt△ADF中,AM=MF,
∴DM=AM=MF,∠MDA=∠MAD,
∴∠DMF=2∠DAM.
在Rt△AEF中,AM=MF,
∴AM=MF=ME,
∴DM=ME.
∵∠MDA=∠MAD,∠MAE=∠MEA,
∴∠DME=∠DMF+∠FME=∠MDA+∠MAD+∠MAE+∠MEA=2(∠DAM+∠MAE)=2∠DAC=2×45°=90°.
∴DM⊥ME
【解析】猜想:DM=ME
證明:如圖1,延長(zhǎng)EM交AD于點(diǎn)H,
∵四邊形ABCD和CEFG是矩形,
∴AD∥EF,
∴∠EFM=∠HAM,
又∵∠FME=∠AMH,F(xiàn)M=AM,
在△FME和△AMH中,
∴△FME≌△AMH(ASA)
∴HM=EM,
在RT△HDE中,HM=EM,
∴DM=HM=ME,
∴DM=ME.
如圖1,延長(zhǎng)EM交AD于點(diǎn)H,
∵四邊形ABCD和CEFG是正方形,
∴AD∥EF,
∴∠EFM=∠HAM,
又∵∠FME=∠AMH,F(xiàn)M=AM,
在△FME和△AMH中,
∴△FME≌△AMH(ASA)
∴HM=EM,
在RT△HDE中,HM=EM,
∴DM=HM=ME,
∴DM=ME.
∵四邊形ABCD和CEFG是正方形,
∴AD=CD,CE=CF,
∵△FME≌△AMH,
∴EF=AH,
∴DH=DE,
∴△DEH是等腰直角三角形,
又∵M(jìn)H=ME,
故答案為:DM=ME,DM⊥ME.
猜想:延長(zhǎng)EM交AD于點(diǎn)H,利用△FME≌△AMH,得出HM=EM,再利用直角三角形中,斜邊的中線(xiàn)等于斜邊的一半證明.(1)延長(zhǎng)EM交AD于點(diǎn)H,利用△FME≌△AMH,得出HM=EM,再利用直角三角形中,斜邊的中線(xiàn)等于斜邊的一半證明,(2)連接AE,AE和EC在同一條直線(xiàn)上,再利用直角三角形中,斜邊的中線(xiàn)等于斜邊的一半證明.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的直徑,P為⊙O外一點(diǎn),且OP∥BC,∠P=∠BAC.
(1)求證:PA為⊙O的切線(xiàn);
(2)若OB=5,OP= ,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)閱讀理解:
如圖①,在△ABC中,若AB=10,AC=6,求BC邊上的中線(xiàn)AD的取值范圍.
解決此問(wèn)題可以用如下方法:延長(zhǎng)AD到點(diǎn)E使DE=AD,再連接BE(或?qū)?/span>△ACD繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三邊的關(guān)系即可判斷.
中線(xiàn)AD的取值范圍是 ;
(2)問(wèn)題解決:
如圖②,在△ABC中,D是BC邊上的中點(diǎn),DE⊥DF于點(diǎn)D,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,連接EF,求證:BE+CF>EF;
(3)問(wèn)題拓展:
如圖③,在四邊形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以為頂點(diǎn)作一個(gè)70°角,角的兩邊分別交AB,AD于E、F兩點(diǎn),連接EF,探索線(xiàn)段BE,DF,EF之間的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰RtABC 中,∠BAC=90°,在BC上截取BD=BA,作∠ABC的平分線(xiàn)與AD相交于點(diǎn)P,連接PC,若△ABC的面積為8cm2,則△BPC的面積為( )
A. 4cm2 B. 5cm2 C. 6cm2 D. 7cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列做法正確的是( )
A. 由2(x+1)=x+7去括號(hào)、移項(xiàng)、合并同類(lèi)項(xiàng),得x=5
B. 由=1+去分母,得2(2x﹣1)=1+3(x﹣3)
C. 由2(2x﹣1)﹣3(x﹣3)=1去括號(hào),得4x﹣2﹣3x﹣9=1
D. 由7x=4x﹣3移項(xiàng),得7x﹣4x=3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠B=60°,∠C=30°,AD和AE分別是△ABC的高和角平分線(xiàn),求∠DAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D,tan∠ACD= ,AB=5,那么CD的長(zhǎng)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,延長(zhǎng)AB到點(diǎn)E,使BE=AB,連接DE交BC于點(diǎn)F,則下列結(jié)論不一定成立的是( )
A.∠E=∠CDF
B.EF=DF
C.AD=2BF
D.BE=2CF
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,直線(xiàn)y1=2x﹣2與坐標(biāo)軸交于A、B兩點(diǎn),與雙曲線(xiàn)y2= (x>0)交于點(diǎn)C,過(guò)點(diǎn)C作CD⊥x軸,且OA=AD,則以下結(jié)論: ①當(dāng)x>0時(shí),y1隨x的增大而增大,y2隨x的增大而減小;
②k=4;
③當(dāng)0<x<2時(shí),y1<y2;
④如圖,當(dāng)x=4時(shí),EF=4.
其中正確結(jié)論的個(gè)數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com