【題目】如圖,在△ABC中,∠B=60°,∠C=30°,AD和AE分別是△ABC的高和角平分線,求∠DAE的度數(shù).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系,A(-2,0),B(0,3),點M在直線y=x 上,且SΔMAB=6,則點M的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是的角平分線,,,垂足分別為點E、點F,連接EF與AD相交于點O,下列結(jié)論不一定成立的是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生體育訓(xùn)練的情況,某市從全市九年級學(xué)生中隨機抽取部分學(xué)生進行了一次體育科目測試(把成績結(jié)果分為四個等級:A級:優(yōu)秀;B級:良好;C級:及格;D級:不及格),并將測試結(jié)果繪成了如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中的信息解答下列問題:
(1)求本次抽樣測試的學(xué)生人數(shù);
(2)求扇形圖中∠α的度數(shù),并把條形統(tǒng)計圖補充完整;
(3)該市九年級共有學(xué)生9000名,如果全部參加這次體育測試,則測試等級為D的約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】猜想與證明:
如圖1,擺放矩形紙片ABCD與矩形紙片ECGF,使B、C、G三點在一條直線上,CE在邊CD上,連接AF,若M為AF的中點,連接DM、ME,試猜想DM與ME的關(guān)系,并證明你的結(jié)論.
拓展與延伸:
(1)若將”猜想與證明“中的紙片換成正方形紙片ABCD與正方形紙片ECGF,其他條件不變,則DM和ME的關(guān)系為 .
(2)如圖2擺放正方形紙片ABCD與正方形紙片ECGF,使點F在邊CD上,點M仍為AF的中點,試證明(1)中的結(jié)論仍然成立.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD的對角線AC和BD交于點O,則下列不能判斷四邊形ABCD是平行四邊形的條件是( 。
A. OA=OC,AD∥BC B. ∠ABC=∠ADC,AD∥BC
C. AB=DC,AD=BC D. ∠ABD=∠ADB,∠BAO=∠DCO
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算題
(1)計算:4sin60°+|3﹣ |﹣( )﹣1+(π﹣2017)0 .
(2)先化簡,再求值:( ﹣1)÷ ,其中x的值從不等式組 的整數(shù)解中任選一個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以AB為直徑的⊙O交∠BAD的角平分線于C,過C作CD⊥AD于D,交AB的延長線于E.
(1)求證:直線CD為⊙O的切線;
(2)當(dāng)AB=2BE,且CE= 時,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,海中一小島有一個觀測點A,某天上午觀測到某漁船在觀測點A的西南方向上的B處跟蹤魚群由南向北勻速航行.B處距離觀測點30 海里,若該漁船的速度為每小時30海里,問該漁船多長時間到達觀測點A的北偏西60°方向上的C處?(計算結(jié)果用根號表示,不取近似值)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com