【題目】如圖甲,在△ABC中,∠ACB為銳角.點(diǎn)D為射線BC上一動點(diǎn),連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF

解答下列問題:

1)如果AB=AC,∠BAC=90

當(dāng)點(diǎn)D在線段BC上時(與點(diǎn)B不重合),如圖乙,線段CFBD之間的位置關(guān)系為 ,數(shù)量關(guān)系為

當(dāng)點(diǎn)D在線段BC的延長線上時,如圖丙,中的結(jié)論是否仍然成立,為什么?

2)如果AB≠AC∠BAC≠90,點(diǎn)D在線段BC上運(yùn)動.

試探究:當(dāng)△ABC滿足一個什么條件時,CF⊥BC(點(diǎn)C、F重合除外)?畫出相應(yīng)圖形,并說明理由.(畫圖不寫作法)

3)若AC,BC=3,在(2)的條件下,設(shè)正方形ADEF的邊DE與線段CF相交于點(diǎn)P,求線段CP長的最大值.

【答案】1①CFBD位置關(guān)系是垂 直、數(shù)量關(guān)系是相 等;

當(dāng)點(diǎn)DBC的延長線上時的結(jié)論仍成立.

由正方形ADEFAD="AF" ,∠DAF=90

∵∠BAC=90∴∠DAF="∠BAC" , ∴∠DAB=∠FAC,

AB="AC" ∴△DAB≌△FAC , ∴CF=BD     

∠ACF=∠ABD

∵∠BAC=90AB="AC" ,∴∠ABC=45,∴∠ACF=45

∴∠BCF="∠ACB+∠ACF=" 90.即 CF⊥BD

2)畫圖正確       

當(dāng)∠BCA=45時,CF⊥BD(如圖。

理由是:過點(diǎn)AAG⊥ACBC于點(diǎn)G∴AC=AG

可證:△GAD≌△CAF ∴∠ACF=∠AGD=45

∠BCF="∠ACB+∠ACF=" 90. 即CF⊥BD

3)當(dāng)具備∠BCA=45時,

過點(diǎn)AAQ⊥BCBC的延長線于點(diǎn)Q,(如圖戊)

∵DECF交于點(diǎn)P時, 此時點(diǎn)D位于線段CQ上,

∵∠BCA=45,可求出AQ= CQ=4.設(shè)CD="x" ,∴ DQ=4—x,

容易說明△AQD∽△DCP,,

∵0x≤3 ∴當(dāng)x=2時,CP有最大值1

【解析】

1)首先選擇圖2證明,由AB=AC,∠BAC=90°,可得:△ABC是等腰直角三角形,又由四邊形ADEF是正方形,易證得△ABD≌△ACFSAS),即可求得:CF=BD∠ACF=∠B=45°,證得CF⊥BD;

2)過點(diǎn)AAG⊥ACBC于點(diǎn)G,可證△GAD≌△CAF,則∠ACF=∠AGD=45,從而得∠BCF="∠ACB+∠ACF=" 90, 即CF⊥BD。

3)首先作輔助線:過點(diǎn)AAG⊥BC,垂足為G,連接CF,易得:△AGD∽△DCP,由相似三角形的對應(yīng)邊成比例,即可求得:AGCP=GDDC,在等腰Rt△AGC中求得AC的值,設(shè)GD=x,即可求得CP關(guān)于x的二次函數(shù),求得最大值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OAC的頂點(diǎn)O在坐標(biāo)原點(diǎn),OA邊在x軸上,OA=2,AC=1,把OAC繞點(diǎn)A按順時針方向旋轉(zhuǎn)到O′AC′,使得點(diǎn)O′的坐標(biāo)是(1,),則在旋轉(zhuǎn)過程中線段OC掃過部分(陰影部分)的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在平面直角坐標(biāo)系中,點(diǎn)軸上,點(diǎn)軸上,,,,點(diǎn)的坐標(biāo)是

1)求三個頂點(diǎn)、、的坐標(biāo);

2)連接、,并用含字母的式子表示的面積();

3)在(2)問的條件下,是否存在點(diǎn),使的面積等于的面積?如果存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,垂直平分,分別交、于點(diǎn),垂直平分,分別交,于點(diǎn)、

1)請判斷△ANE的周長與AB+AC的和的大小,并說明理由.

2)①如圖①,若∠B=34°,∠C=28°,求的度數(shù)為______;

②如圖②,若,則的度數(shù)為________;

③若,則的度數(shù)為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在以AB為直徑的半圓中,將弧BC沿弦BC折疊交AB于點(diǎn)D,若AD=5,DB=7.

(1)求BC的長;

(2)求圓心到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,,結(jié)論:①;②;③;④,其中正確的是有(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程(組)或不等式(組)解應(yīng)用題:

1)甲工人接到240個零件的任務(wù),工作1小時后,因要提前完成任務(wù),調(diào)來乙和甲合作,合做了5小時完成.已知甲每小時比乙少做4個,那么甲、乙每小時各做多少個?

2)某工廠準(zhǔn)備購進(jìn)、兩種機(jī)器共20臺用于生產(chǎn)零件,經(jīng)調(diào)查2型機(jī)器和1型機(jī)器價格為18萬元,1型機(jī)器和2型機(jī)器價格為21萬元.

①求一臺型機(jī)器和一臺型機(jī)器價格分別是多少萬元?

②已知1型機(jī)器每月可加工零件400個,1型機(jī)器每月可加工零件800個,經(jīng)預(yù)算購買兩種機(jī)器的價格不超過140萬元,每月兩種機(jī)器加工零件總數(shù)不低于12400個,那么有哪幾種購買方案,哪種方案最省錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊥BC且AB=BC,DE⊥CD且DE=CD,請按照圖中所標(biāo)注的數(shù)據(jù),計(jì)算圖中實(shí)線所圍成的圖形的面積S是( )

A. 36B. 48C. 72D. 108

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,對稱軸為直線x=1的拋物線y=x2﹣bx+cx軸交于A(x1,0)、B(x2,0)(x1<x2)兩點(diǎn),與y軸交于C點(diǎn),且+=﹣

(1)求拋物線的解析式;

(2)拋物線頂點(diǎn)為D,直線BDy軸于E點(diǎn);

①設(shè)點(diǎn)P為線段BD上一點(diǎn)(點(diǎn)P不與B、D兩點(diǎn)重合),過點(diǎn)Px軸的垂線與拋物線交于點(diǎn)F,求BDF面積的最大值;

②在線段BD上是否存在點(diǎn)Q,使得∠BDC=QCE?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案