精英家教網 > 初中數學 > 題目詳情

【題目】如圖.在等邊△ABC中,∠ABC與∠ACB的平分線相交于點O,且ODAB,OEAC.

(1)試判定△ODE的形狀,并說明你的理由;

(2)線段BD、DE、EC三者有什么關系?寫出你的判斷過程.

【答案】(1)ODE是等邊三角形;理由見解析;(2)BD=DE=EC,理由見解析;

【解析】

試題(1)根據平行線的性質及等邊三角形的性質可得到△ODE是等邊三角形;

2)根據角平分線的性質及平行線的性質可得到∠DBO=∠DOB,根據等角對等邊可得到DB=DO,同理可證明EC=EO,因為DE=OD=OE,所以BD=DE=EC

試題解析:(1△ODE是等邊三角形,

其理由是:∵△ABC是等邊三角形,

∴∠ABC=∠ACB=60°,

∵OD∥ABOE∥AC

∴∠ODE=∠ABC=60°,∠OED=∠ACB=60°

∴△ODE是等邊三角形;

2)答:BD=DE=EC

其理由是:∵OB平分∠ABC,且∠ABC=60°,

∴∠ABO=∠OBD=30°,

∵OD∥AB,

∴∠BOD=∠ABO=30°,

∴∠DBO=∠DOB

∴DB=DO,

同理,EC=EO

∵DE=OD=OE,

∴BD=DE=EC

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖所示,ABC中,∠B=90°AB=6cm,BC=8cmP從點A開始沿AB邊向B1cm/s的速度移動,點QB點開始沿BC邊向點C2cm/s的速度移動.如果P,Q分別從AB同時出發(fā),

1)如果P、Q同時出發(fā),幾秒后,可使PBQ的面積為8平方厘米?

2)線段PQ能否將ABC分成面積相等的兩部分?若能,求出運動時間;若不能說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將ABC繞點A順時針旋轉60°得到ADE,點C的對應點E恰好落在BA的延長線上,DEBC交于點F,連接BD.下列結論不一定正確的是(  )

A. AD=BD B. ACBD C. DF=EF D. CBD=E

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,平面內,,,.

1)求證:;

2)當時,取的中點分別為,連接,如圖2,判斷的形狀,并加以證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,在中,的平分線交于點,過點于點,交于點,那么下列結論:①;②;③都是等腰三角形;④的周長等于的和,其中正確的有(  )

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】珍重生命,注意安全!同學們在上下學途中一定要注意騎車安全.小明騎單車上學,當他騎了一段時,想起要買某本書,于是又折回到剛經過的新華書店,買到書后繼續(xù)去學校,以下是他本次所用的時間與路程的關系示意圖.根據圖中提供的信息回答下列問題:

1)小明家到學校的路程是多少米?

2)小明在書店停留了多少分鐘?

3)本次上學途中,小明一共行駛了多少米?一共用了多少分鐘?

4)我們認為騎單車的速度超過300/分鐘就超越了安全限度.問:在整個上學的途中哪個時間段小明騎車速度最快,速度在安全限度內嗎?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ACD中,∠ACD=60°,以AC為邊作等腰三角形ABC,AB=ACE、F分別為邊CD、BC上的點,連結AE、AF、EF,∠BAC=EAF=60°

1)求證:ABF≌△ACE;

2)若∠AED=70°,求∠EFC的度數;

3)請直接指出:當F點在BC何處時,ACEF?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC△DBE中,BC=BE,還需再添加兩個條件才能使△ABC≌△DBE,不能添加的一組條件是( )

A. AB=DB,∠ A=∠ D B. DB=AB,AC=DE C. AC=DE∠C=∠E D. ∠ C=∠ E,∠ A=∠ D

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,EF是四邊形ABCD的對角線AC上的兩點,AF=CE,DF=BE,DFBE

求證:(1)AFD≌△CEB.(2)四邊形ABCD是平行四邊形.

查看答案和解析>>

同步練習冊答案