如圖,已知A,B兩點(diǎn)的坐標(biāo)分別為(2,0),(0,2),⊙C的圓心坐標(biāo)為(-1,0),半徑為1.若D是⊙C上的一個(gè)動(dòng)點(diǎn),線段DA與y軸交于點(diǎn)E,則△ABE面積的最小值是______.
如圖所示,當(dāng)AD與⊙C相切時(shí),線段BE最短,此時(shí)△ABE面積的最小,
∵A(2,0),C(-1,0),⊙C半徑為1,
∴AO=2,AC=2+1=3,CD=1,
在Rt△ACD中,AD=
AC2-CD2
=
32-12
=2
2
,
∵CD⊥AD,
∴∠D=90°,
∴∠D=∠AOE,
在△AOE與△ADC中,
∠D=∠AOE
∠EAO=∠CAD

∴△AOE△ADC,
EO
CD
=
AO
AD
,
EO
1
=
2
2
2
,
解得EO=
2
2

∵點(diǎn)B(0,2),
∴OB=2,
∴BE=OB-OE=2-
2
2
,
∴△ABE面積的最小值=
1
2
×BE×AO=
1
2
(2-
2
2
)×2=2-
2
2

故答案為:2-
2
2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:拋物線y=ax2+bx+4的對(duì)稱軸為x=-1,且與x軸相交于點(diǎn)A、B,與y軸相交于點(diǎn)C,其中點(diǎn)A的坐標(biāo)為(-3,0),
(1)求該拋物線的解析式;
(2)若該拋物線的頂點(diǎn)為D,求△ACD的面積;
(3)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使得以A、B、C、P為頂點(diǎn)的四邊形是梯形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,直線AB與x軸,y軸相交于A,B兩點(diǎn),直線AB的函數(shù)表達(dá)式y=-
3
4
x-6
,圓M經(jīng)過原點(diǎn)O,A,B三點(diǎn).
(1)求出A,B的坐標(biāo);
(2)若有一拋物線的對(duì)稱軸平行于y軸且經(jīng)過點(diǎn)M,頂點(diǎn)C在⊙M上且拋物線經(jīng)過點(diǎn)B,求此拋物線的函數(shù)解析式;
(3)如圖,設(shè)(2)中求得的開口向下的拋物線交x軸于D、E兩點(diǎn),拋物線上是否存在點(diǎn)P,使得S△PDE=
1
10
S△ABC
?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1、2,已知拋物線y=ax2+bx+3經(jīng)過點(diǎn)B(-1,0)、C(3,0),交y軸于點(diǎn)A.
(1)求此拋物線的解析式;
(2)如圖1,若M(0,1),過點(diǎn)A的直線與x軸交于點(diǎn)D(4,0).直角梯形EFGH的上底EF與線段CD重合,∠FEH=90°,EFHG,EF=EH=1.直角梯形EFGH從點(diǎn)D開始,沿射線DA方向勻速運(yùn)動(dòng),運(yùn)動(dòng)的速度為1個(gè)長(zhǎng)度單位/秒,在運(yùn)動(dòng)過程中腰FG與直線AD始終重合,設(shè)運(yùn)動(dòng)時(shí)間為t秒.當(dāng)t為何值時(shí),以M、O、H、E為頂點(diǎn)的四邊形是特殊的平行四邊形;
(3)如圖2,拋物線頂點(diǎn)為K,KI⊥x軸于I點(diǎn),一塊三角板直角頂點(diǎn)P在線段KI上滑動(dòng),且一直角邊過A點(diǎn),另一直角邊與x軸交于Q(m,0),請(qǐng)求出實(shí)數(shù)m的變化范圍,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,Rt△ABC中,∠A=90°,AB=4,AC=3,D在BC上運(yùn)動(dòng)(不與B、C重合),過D點(diǎn)分別向AB、AC作垂線,垂足分別為E、F,則矩形AEDF的面積的最大值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列模擬擲硬幣的試驗(yàn)不正確的是( 。
A.用計(jì)算器隨機(jī)地取數(shù),取奇數(shù)相當(dāng)于正面朝上,取偶數(shù)相當(dāng)于硬幣正面朝下
B.袋中裝兩個(gè)小球,分別標(biāo)上1和2,隨機(jī)地摸,摸出1表示硬幣正面朝上,摸出2表示硬幣正面朝下
C.在沒有大小王的撲克中隨機(jī)地抽一張牌,抽到紅色牌表示硬幣正面朝上,抽到黑色牌表示硬幣正面朝下
D.將1,2,3,4,5分別寫在5張紙上,并搓成團(tuán),每次隨機(jī)地取一張,取到奇數(shù)表示硬幣正面朝上,取到偶數(shù)表示硬幣正面朝下

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

當(dāng)k分別取-1,1,2時(shí),函數(shù)y=(k-1)x2-4x+5-k都有最大值嗎?請(qǐng)寫出你的判斷,并說明理由;若有,請(qǐng)求出最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖(a),點(diǎn)F、G、H、E分別從正方形ABCD的頂點(diǎn)B、C、D、A同時(shí)出發(fā),以1cm/s的速度沿著正方形的邊向C、D、A、B運(yùn)動(dòng).若設(shè)運(yùn)動(dòng)時(shí)間為x(s),問:
(1)四邊形EFGH是什么圖形?證明你的結(jié)論;
(2)若正方形ABCD的邊長(zhǎng)為2cm,四邊形EFGH的面積為y(cm2),求y關(guān)于x的函數(shù)解析式和自變量x的取值范圍;
(3)若改變點(diǎn)的連接方式(如圖(b)),其余不變.則當(dāng)動(dòng)點(diǎn)出發(fā)幾秒時(shí),圖中空白部分的面積為3cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù)),x與y的部分對(duì)應(yīng)值如下表,則當(dāng)x=______或______時(shí),y=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案