【題目】解以下三個方程,并根據(jù)這三個方程的解的個數(shù),討論關(guān)于x的方程ax=b(其中a、b為常數(shù))解的數(shù)量與a、b的取值的關(guān)系.
(1)2x+1=x+3
(2)3x+1=3(x﹣1)
(3)
【答案】(1)x=2;(2)無解;(3)任意數(shù);結(jié)論:當(dāng)a≠0時,解是;當(dāng)a=0時①當(dāng)b=0時,任意數(shù)均為方程的解;②當(dāng)b≠0時,方程無解.
【解析】
將方程去分母,然后去括號,移項(xiàng),合并同類項(xiàng),系數(shù)化為1,即可求解.
解:(1)2x+1=x+3
2x﹣x=3﹣1
x=2
顯然,x=2是方程2x+1=x+3的唯一解.
(2)3x+1=3(x﹣1)
3x﹣3x=﹣3﹣1
0x=﹣4
顯然,無論x取何值,均不能使等式成立,所以方程3x+1=3(x﹣1)無解.
(3)
0x=0
顯然,無論x取何值,均可使方程成立,所以該方程的解為任意數(shù).
由(1)(2)可歸納:關(guān)于x的方程ax=b(其中a、b為常數(shù)) 解的情況分以下幾種:
當(dāng)a≠0時,方程ax=b的解是;
當(dāng)a=0時,又分兩種情況:
①當(dāng)b=0時,方程有無數(shù)個解,任意數(shù)均為方程的解;
②當(dāng)b≠0時,方程無解.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法:①的5倍與的和的一半用代數(shù)式表示是;②,都是單項(xiàng)式,也都是整式;③(、、是常數(shù),)是二次三項(xiàng)式;④,,5是的項(xiàng);⑤單項(xiàng)式的系數(shù)是-1,次數(shù)是3,其中正確的個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】工藝商場按標(biāo)價(jià)銷售某種工藝品時,每件可獲利45元;按標(biāo)價(jià)的八五折銷售該工藝品8件與將標(biāo)價(jià)降低35元銷售該工藝品12件所獲利潤相等.
(1)該工藝品每件的進(jìn)價(jià)、標(biāo)價(jià)分別是多少元?
(2)若每件工藝品按(1)中求得的進(jìn)價(jià)進(jìn)貨,標(biāo)價(jià)售出,工藝商場每天可售出該工藝品100件.若每件工藝品降價(jià)1元,則每天可多售出該工藝品4件.問每件工藝品降價(jià)多少元出售,每天獲得的利潤最大?獲得的最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在半徑等于5cm的圓內(nèi)有長為5cm的弦,則此弦所對的圓周角為( )
A.120° B.30°或120°
C.60° D.60°或120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小軍和爸爸同時從家騎自行車去圖書館,爸爸先以150米/分的速度騎行一段時間,休息了5分鐘,再以m米/分的速度到達(dá)圖書館,小軍始終以同一速度騎行,兩人行駛的路程y(米)與時間x(分)的關(guān)系如圖所示,請結(jié)合圖像,解答下列問題:
(1)a= b= ,m=
(2)若小軍的速度是120米/分,求小軍在途中與爸爸第二次相遇時,距圖書館的距離;
(3)在(2)的條件下,爸爸自第二次出發(fā)至到達(dá)圖書館前,何時與小軍相距100米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AC⊥BC于C,BC=a,CA=b,AB=c,下列圖形中⊙O與△ABC的某兩條邊或三邊所在的直線相切,則⊙O的半徑為的是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,要在長方形和環(huán)形地塊中鋪設(shè)草坪,長方形的長、寬分別為a m、b m,環(huán)形的外圓、內(nèi)圓的半徑分別為R m、r m.
(1)求共需草皮的面積.
(2)若草皮每平方米需30元,當(dāng) 時,求草皮的費(fèi)用.(保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,BC=6,E是BC邊的中點(diǎn),點(diǎn)P在線段AD上,過P作PF⊥AE于F,設(shè)PA=x.
(1)求證:△PFA∽△ABE;
(2)當(dāng)點(diǎn)P在線段AD上運(yùn)動時,設(shè)PA=x,是否存在實(shí)數(shù)x,使得以點(diǎn)P,F,E為頂點(diǎn)的三角形也與△ABE相似?若存在,請求出x的值;若不存在,請說明理由;
(3)探究:當(dāng)以D為圓心,DP為半徑的⊙D與線段AE只有一個公共點(diǎn)時,請直接寫出x滿足的條件: .
備用圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,邊長為2的正方形中,是對角線上的一個動點(diǎn)(與點(diǎn)、不重合),過點(diǎn)作,交射線于點(diǎn),過點(diǎn)作,垂足為點(diǎn).
(1)求證::
(2)在點(diǎn)的運(yùn)動過程中,的長度是否發(fā)生變化?若不變,試求出這個不變的值,寫出解答過程:若變化,試說明理由:
(3)在點(diǎn)的運(yùn)動過程中,能否為等腰三角形?如果能,直接寫出此時的長;如果不能,試說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com