【題目】已知,如圖:AD是△ABC的中線,AE⊥AB,AE=AB,AF⊥AC,AF=AC,連結(jié)EF.試猜想線段AD與EF的關(guān)系,并證明
【答案】EF=2AD,EF⊥AD;證明見(jiàn)解析
【解析】
先猜想EF=2AD,EF⊥AD.延長(zhǎng)AD到M,使得AD=DM,連接MC,延長(zhǎng)DA交EF于N,易證BD=CD,即可證明△ABD≌△MCD,可得AB=MC,∠BAD=∠M,即可求得∠EAF=∠MCA,即可證明△AEF≌△CMA,可得EF=AM,∠CAM=∠F,即可解題.
猜想:EF=2AD,EF⊥AD.
證明:如圖,延長(zhǎng)AD到M,使得AD=DM,連接MC,延長(zhǎng)DA交EF于N,
∴AD=DM,AM=2AD,
∵AD是△ABC的中線,∴BD=CD,
在△ABD和△MCD中,
, ∴△ABD≌△MCD(SAS),
∴AB=MC,∠BAD=∠M,
∵AB=AE,∴AE=MC,
∵AE⊥AB,AF⊥AC,∴∠EAB=∠FAC=90°,
∵∠FAC+∠BAC+∠EAB+∠EAF=360°,∴∠BAC+∠EAF=180°,
∵∠CAD+∠M+∠MCA=180°,∴∠CAD+∠BAD+∠MCA=180°,
即∠BAC+∠MCA=180°,∴∠EAF=∠MCA.
在△AEF和△CMA中,
,∴△AEF≌△CMA(SAS),
∴EF=AM,∠CAM=∠F,∴EF=2AD;
∵∠CAF=90°,∴∠CAM+∠FAN=90°,
∵∠CAM=∠F,∴∠F+∠FAN=90°,
∴∠ANF=90°,∴EF⊥AD.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,△ABC中,AB=AC=6,∠A=45°,點(diǎn)D在AC上,點(diǎn)E在BD上,且△ABD、△CDE、△BCE均為等腰三角形.
(1)求∠EBC的度數(shù);
(2)求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中,.設(shè)的面積為.
①圖1中,為中點(diǎn),,,,是上的四點(diǎn);
②圖2中,,,,,,,交于點(diǎn);
③圖3中,,D為中點(diǎn),.
其中,陰影部分面積為的是______(填序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知RtΔABC,∠C=90°,D為BC的中點(diǎn).以AC為直徑的圓O交AB于點(diǎn)E.
(1)求證:DE是圓O的切線.
(2)若AE:EB=1:2,BC=6,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABE中,∠BAE=105°,AE的垂直平分線MN交BE于點(diǎn)C,且AB=CE,則∠B的度數(shù)是( )
A. 45°B. 60°C. 50°D. 55°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)是軸上一點(diǎn),點(diǎn)、在軸上,且、滿足等式.
(1)求、的值;
(2)若點(diǎn)坐標(biāo)為,動(dòng)點(diǎn)從點(diǎn)出發(fā)沿射線運(yùn)動(dòng),連接,設(shè)點(diǎn)的縱坐標(biāo)為,的面積為,求與的關(guān)系式,并直接寫(xiě)出的取值范圍;
(3)當(dāng)點(diǎn)在線段上,點(diǎn)是線段的延長(zhǎng)線上一點(diǎn),連接、,,若與的周長(zhǎng)差為 2,點(diǎn)是軸上一點(diǎn),若是以為頂角的等腰三角形,求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等邊三角形,點(diǎn)D、E分別是直線BC、AC上的點(diǎn),且BD=CE.
(1)如圖①,當(dāng)點(diǎn)D、E分別在線段BC、AC上時(shí),BE與AD相交于點(diǎn)F.求∠AFB的度數(shù).
(2)如圖②,當(dāng)點(diǎn)D在CB的延長(zhǎng)線上,點(diǎn)E在AC的延長(zhǎng)線上時(shí),CF為△ABC的高線則線段CD、AF、CE、之間的數(shù)量關(guān)系是 ,并加以證明.
(3)在①的條件下,連接FC,如圖③,若∠DFC=90°,AF= 3,求BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為加快城市群的建設(shè)與發(fā)展,在A、B兩城市間新建一條城際鐵路,建成后,鐵路運(yùn)行里程由現(xiàn)在的210km縮短至180km,平均時(shí)速要比現(xiàn)行的平均時(shí)速快200km,運(yùn)行時(shí)間僅是現(xiàn)行時(shí)間的,求建成后的城際鐵路在A、B兩地的運(yùn)行時(shí)間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解:
如圖①,在△ABC的邊AB上取一點(diǎn)P,連接CP,可以把△ABC分成兩個(gè)三角形,如果這兩個(gè)三角形都是等腰三角形,我們就稱點(diǎn)P是△ABC的邊AB上的和諧點(diǎn).
解決問(wèn)題:
(1)如圖②,在△ABC中,∠ACB=90°,試找出邊AB上的和諧點(diǎn)P,并說(shuō)明理由:
(2)己知∠A=36°,△ABC的頂點(diǎn)B在射線l上(如圖③),點(diǎn)P是邊AB上的和諧點(diǎn),請(qǐng)?jiān)趫D③及備用圖中畫(huà)出所有符合條件的點(diǎn)B,用同一標(biāo)記標(biāo)上相等的邊,并寫(xiě)出相應(yīng)的∠B的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com