【題目】如圖,點(diǎn)Ax軸負(fù)半軸上的一個(gè)動(dòng)點(diǎn),點(diǎn)Cy軸上,以AC為對(duì)角線(xiàn)畫(huà)正方形ABCD,已知點(diǎn)C的坐標(biāo)是C(0,4),設(shè)點(diǎn)A的坐標(biāo)為A(n,0),連接OD,當(dāng)OD時(shí),n_____

【答案】-2

【解析】

先求得ODy軸的夾角為45°,然后依據(jù)OD的長(zhǎng),可求得OFDF的長(zhǎng),作輔助線(xiàn),構(gòu)建全等三角形,再證明AFD≌△DEC,從而可得到AFDE3,從而可得到點(diǎn)A的坐標(biāo).

解:如圖所示:過(guò)點(diǎn)DEFx軸于F,過(guò)CCEEFE,

∵四邊形ABCD為正方形,

A、B、C、D四點(diǎn)共圓,∠DAC45°

又∵∠COA90°,

∴點(diǎn)O也在這個(gè)圓上,

∴∠COD=∠CAD45°

又∵OD,

OFDF1

C(0,4),

OCEF4

DE413,

∵四邊形ABCD為正方形,

ADCD,

∵∠ADC90°,

∴∠ADF+CDE=∠CDE+DCE90°,

∴∠ADF=∠DCE,

∵∠AFD=∠DEC90°

∴△AFD≌△DEC(SAS),

AFDE3,

AO2

A(2,0),即n=﹣2;

故答案為:﹣2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知一個(gè)直角三角形紙片OAB,其中AOB=90°,OA=2OB=4.如圖,將該紙片放置在平面直角坐標(biāo)系中,折疊該紙片,折痕與邊OB交于點(diǎn)C,與邊AB交于點(diǎn)D

1)若折疊后使點(diǎn)B與點(diǎn)A重合,求點(diǎn)C的坐標(biāo);

2)若折疊后點(diǎn)B落在邊OA上的點(diǎn)為B,設(shè)OB′=xOC=y,試寫(xiě)出y關(guān)于x的函數(shù)解析式,并確定y的取值范圍;

3)若折疊后點(diǎn)B落在邊OA上的點(diǎn)為B,且使BD//OB,求此時(shí)點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知正比例函數(shù)yx的圖象與反比例函數(shù)y的圖象交于Aa,-2),B兩點(diǎn).

1)求反比例函數(shù)的表達(dá)式和點(diǎn)B的坐標(biāo);

2P是第一象限內(nèi)反比例函數(shù)圖象上一點(diǎn),過(guò)點(diǎn)Py軸的平行線(xiàn),交直線(xiàn)AB于點(diǎn)C,連接PO,若POC的面積為3,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,ABAC,點(diǎn)DBC中點(diǎn),∠EDF兩邊分別交線(xiàn)段AB于點(diǎn)E,交線(xiàn)段AC于點(diǎn)F,且∠EDF+BAC180°

1)如圖1,當(dāng)∠EDF90°時(shí),求證:BEAF;

2)如圖2,當(dāng)∠EDF60°時(shí),求證:AE+AFAD;

3)如圖3,在(2)的條件下,連接EF并延長(zhǎng)EF至點(diǎn)G,使FGEF,連接CG,若BE5,CF4,求CG的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ADBC邊上的中線(xiàn),EAD的中點(diǎn),過(guò)點(diǎn)ABC的平行線(xiàn)交BE的延長(zhǎng)線(xiàn)于點(diǎn)F,連接CF.

(1)求證:AF=DC;

(2)ABC滿(mǎn)足什么條件時(shí),四邊形ADCF是矩形?并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,將△ABC紙片沿中位線(xiàn)EH折疊,使點(diǎn)A對(duì)稱(chēng)點(diǎn)D落在BC邊上,再將紙片分別沿等腰△BED和等腰△DHC的底邊上的高線(xiàn)EF,HG折疊,折疊后的三個(gè)三角形拼合形成一個(gè)矩形,類(lèi)似地,對(duì)多邊形進(jìn)行折疊,若翻折后的圖形恰能拼合成一個(gè)無(wú)縫隙、無(wú)重疊的矩形,這樣的矩形稱(chēng)為疊合矩形.

(1)將ABCD紙片按圖2的方式折疊成一個(gè)疊合矩形AEFG,則操作形成的折痕分別是線(xiàn)段_______,_________;S矩形AEFG:S□ABCD=__________

(2)ABCD紙片還可以按圖3的方式折疊成一個(gè)疊合矩形EFGH,若EF=5,EH=12,求AD的長(zhǎng);

(3)如圖4,四邊形ABCD紙片滿(mǎn)足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10,小明把該紙片折疊,得到疊合正方形,請(qǐng)你幫助畫(huà)出一種疊合正方形的示意圖,并求出AD、BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為12,點(diǎn)E在邊AB上,BE=8,過(guò)點(diǎn)EEFBC,分別交BD、CDG、F兩點(diǎn).若點(diǎn)P、Q分別為DG、CE的中點(diǎn),則PQ的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)服裝部為了調(diào)動(dòng)營(yíng)業(yè)員的積極性,決定實(shí)行目標(biāo)管理,根據(jù)目標(biāo)完成的情況對(duì)營(yíng)業(yè)員進(jìn)行適當(dāng)?shù)莫?jiǎng)勵(lì).為了確定一個(gè)適當(dāng)?shù)脑落N(xiāo)售目標(biāo),商場(chǎng)服裝部統(tǒng)計(jì)了每位營(yíng)業(yè)員在某月的銷(xiāo)售額(單位:萬(wàn)元),數(shù)據(jù)如下:

17

18

16

13

24

15

28

26

18

19

22

17

16

19

32

30

16

14

15

26

15

32

23

17

15

15

28

28

16

19

對(duì)這30個(gè)數(shù)據(jù)按組距3進(jìn)行分組,并整理、描述和分析如下.

頻數(shù)分布表

組別

銷(xiāo)售額

頻數(shù)

7

9

3

2

2

數(shù)據(jù)分析表

平均數(shù)

眾數(shù)

中位數(shù)

20.3

18

請(qǐng)根據(jù)以上信息解答下列問(wèn)題:

(1)填空:a=  ,b=  ,c=  ;

(2)若將月銷(xiāo)售額不低于25萬(wàn)元確定為銷(xiāo)售目標(biāo),則有  位營(yíng)業(yè)員獲得獎(jiǎng)勵(lì);

(3)若想讓一半左右的營(yíng)業(yè)員都能達(dá)到銷(xiāo)售目標(biāo),你認(rèn)為月銷(xiāo)售額定為多少合適?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A是反比例函數(shù)y=(x0)圖象上一點(diǎn),直線(xiàn)y=kx+b過(guò)點(diǎn)A并且與兩坐標(biāo)軸分別交于點(diǎn)B,C,過(guò)點(diǎn)AADx軸,垂足為D,連接DC,若△BOC的面積是4,則△DOC的面積是______

查看答案和解析>>

同步練習(xí)冊(cè)答案