【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點,過點A作BC的平行線交BE的延長線于點F,連接CF.
(1)求證:AF=DC;
(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.
【答案】
(1)證明:∵AF∥BC,
∴∠AFE=∠DBE,
∵E是AD的中點,AD是BC邊上的中線,
∴AE=DE,BD=CD,
在△AFE和△DBE中
∴△AFE≌△DBE(AAS),
∴AF=BD,
∴AF=DC.
(2)解:四邊形ADCF是菱形,
證明:AF∥BC,AF=DC,
∴四邊形ADCF是平行四邊形,
∵AC⊥AB,AD是斜邊BC的中線,
∴AD= BC=DC,
∴平行四邊形ADCF是菱形.
【解析】(1)由平行線的性質(zhì)可知:AF∥BC,得到∠AFE=∠DBE,又E是AD的中點,AD是BC邊上的中線,得到AE=DE,BD=CD,所以△AFE≌△DBE(AAS),AF=BD,即AF=DC;(2)AF∥BC,AF=DC,根據(jù)平行四邊形的定義得到四邊形ADCF是平行四邊形,又AC⊥AB,AD是斜邊BC的中線,得到AD= BC=DC,根據(jù)菱形的定義得到平行四邊形ADCF是菱形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)軸上,點M、N分別表示數(shù)m,n. 則點M,N 之間的距離為|m-n|.已知點A,B,C,D在數(shù)軸上分別表示的數(shù)為a,b,c,d.且|a-c|=|b-c|=|d-a|=1 (a≠b),則線段BD的長度為( )
A.3.5B.0.5C.3.5或0.5D.4.5或0.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一等腰直角三角形紙片,以它的對稱軸為折痕,將三角形對折,得到的三角形還是等腰直角三角形(如圖).依照上述方法將原等腰直角三角形折疊四次,所得小等腰直角三角形的周長是原等腰直角三角形周長的倍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】乘法公式的探究及應(yīng)用.
(1)如圖1,可以求出陰影部分的面積是 (寫成兩數(shù)平方差的形式);
(2)如圖2,若將陰影部分裁剪下來,重新拼成一個矩形,它的寬是 ,長是 ,面積是 (寫成多項式乘法的形式);
(3)比較圖1、圖2兩圖的陰影部分面積,可以得到乘法公式 (用式子表達);
(4)運用你所得到的公式,計算下列各題:
①(2m+n-p)(2m-n+p);②10.3×9.7.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,直線,點為平面上一點,連接與.
(1)如圖1,點在直線、之間,當(dāng),時,求.
(2)如圖2,點在直線、之間左側(cè),與的角平分線相交于點,寫出與之間的數(shù)量關(guān)系,并說明理由.
(3)如圖3,點落在下方,與的角平分線相交于點,與有何數(shù)量關(guān)系?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,點E是線段AD上的任意一點(E與A,D不重合),G,F,H分別為BE,BC,CE的中點.
(1)試說明四邊形EGFH是平行四邊形;
(2)在(1)的條件下,若EF⊥BC,且EF=BC,試說明平行四邊形EGFH是正方形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com