【題目】某中學(xué)選拔一名青年志愿者:經(jīng)筆試、面試,結(jié)果小明和小麗并列第一.評(píng)委會(huì)決定通過抓球來確定人選.規(guī)則如下:在不透明的布袋里裝有除顏色之外均相同的2個(gè)紅球和1個(gè)綠球,小明先取出一個(gè)球,記住顏色后放回,然后小麗再取出一個(gè)球.若兩次取出的球都是紅球,則小明勝出;若兩次取出的球是一紅一綠,則小麗勝出.你認(rèn)為這個(gè)規(guī)則對(duì)雙方公平嗎?請(qǐng)用列表法或畫樹狀圖的方法進(jìn)行分析.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點(diǎn)H為DC上一點(diǎn),BD、AH交于點(diǎn)O,△ABO為等邊三角形,點(diǎn)E在線段AO上,OD=OE,連接BE,點(diǎn)F為BE的中點(diǎn),連接AF并延長交BC于點(diǎn)G,且∠GAD=60°.
(1)若CH=2,AB=4,求BC的長;
(2)求證:BD=AB+AE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某蔬菜生產(chǎn)基地的氣溫較低時(shí),用裝有恒溫系統(tǒng)的大棚栽培一種新品種蔬菜.如圖是試驗(yàn)階段的某天恒溫系統(tǒng)從開啟到關(guān)閉后,大棚內(nèi)的溫度y (℃)與時(shí)間x(h)之間的函數(shù)關(guān)系,其中線段AB、BC表示恒溫系統(tǒng)開啟階段,雙曲線的一部分CD表示恒溫系統(tǒng)關(guān)閉階段.
請(qǐng)根據(jù)圖中信息解答下列問題:
(1)求這天的溫度y與時(shí)間x(0≤x≤24)的函數(shù)關(guān)系式;
(2)求恒溫系統(tǒng)設(shè)定的恒定溫度;
(3)若大棚內(nèi)的溫度低于10℃時(shí),蔬菜會(huì)受到傷害.問這天內(nèi),恒溫系統(tǒng)最多可以關(guān)閉多少小時(shí),才能使蔬菜避免受到傷害?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線是足球場的底線,是球門,點(diǎn)是射門點(diǎn),連接,叫做射門角.
(1)如圖,點(diǎn)是射門點(diǎn),另一射門點(diǎn)在過三點(diǎn)的圓外(未超過底線).證明:
(2)如圖,經(jīng)過球門端點(diǎn),直線,垂足為且與相切與點(diǎn),于點(diǎn),連接,若,求此時(shí)一球員帶球沿直線向底線方向運(yùn)球時(shí)最大射門角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=AD,那么添加下列一個(gè)條件后,仍無法判定△ABC≌△ADC的是( 。
A. CB=CD B. ∠BAC=∠DAC C. ∠BCA=∠DCA D. ∠B=∠D=90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+1與兩坐標(biāo)軸分別交于A,B兩點(diǎn),將線段OA分成n等份,分點(diǎn)分別為P1,P2,P3,…,Pn﹣1,過每個(gè)分點(diǎn)作x軸的垂線分別交直線AB于點(diǎn)T1,T2,T3,…,Tn﹣1,用S1,S2,S3,…,Sn﹣1分別表示Rt△T1OP1,Rt△T2P1P2,…,Rt△Tn﹣1Pn﹣2Pn﹣1的面積,則S1+S2+S3+…+Sn﹣1=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題提出:如果一個(gè)多邊形的各個(gè)頂點(diǎn)均在另一個(gè)多邊形的邊上,則稱這個(gè)多邊形為另一多邊形的內(nèi)接多邊形
問題探究:
(1)如圖1,正方形PEFG的頂點(diǎn)E、F在等邊三角形ABC的邊AB上,頂點(diǎn)P在AC邊上.請(qǐng)?jiān)诘冗吶切?/span>ABC內(nèi)部,以A為位似中心,作出正方形PEFG的位似正方形P'E'F'G',且使正方形P'E'F'G'的面積最大(不寫作法)
(2)如圖2,在邊長為4正方形ABCD中,畫出一個(gè)面積最大的內(nèi)接正三角形,并求此最大內(nèi)接正三角形的面積
拓展應(yīng)用:
(3)如圖3,在邊長為4的正方形ABCD中,能不能截下一個(gè)面積最大的直角三角形,并使其三邊比為3:4:5,若能,請(qǐng)求出此直角三角形的最大面積,若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】音樂噴泉(圖1)可以使噴水造型隨音樂的節(jié)奏起伏變化而變化.某種音樂噴泉形狀如拋物線,設(shè)其出水口為原點(diǎn),出水口離岸邊18m,音樂變化時(shí),拋物線的頂點(diǎn)在直線y=kx上變動(dòng),從而產(chǎn)生一組不同的拋物線(圖2),這組拋物線的統(tǒng)一形式為y=ax2+bx.
(1)若已知k=1,且噴出的拋物線水線最大高度達(dá)3m,求此時(shí)a、b的值;
(2)若k=1,噴出的水恰好達(dá)到岸邊,則此時(shí)噴出的拋物線水線最大高度是多少米?
(3)若k=3,a=﹣,則噴出的拋物線水線能否達(dá)到岸邊?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com