【題目】如圖1,矩形ABCD中,AB=4,AD=5,EBC上一點,BE:CE=3:2,連接AE,點P從點A出發(fā),沿射線AB的方向以每秒1個單位長度的速度勻速運動,過點PPFBC交直線AE于點F.

(1)線段AE=   ;

(2)設(shè)點P的運動時間為t(s),EF的長度為y,求y關(guān)于t的函數(shù)關(guān)系式,并寫出t的取值范圍;

(3)當(dāng)t為何值時,以F為圓心的⊙F恰好與直線AB、BC都相切?并求此時⊙F的半徑;

(4)如圖2,將AEC沿直線AE翻折,得到AEC',連結(jié)AC',如果∠ABF=CBC′,求t值.(直接寫出答案,不要求解答過程).

【答案】(1)5;(2)y=;(3)12;(4).

【解析】1)由矩形性質(zhì)知BC=AD=5,根據(jù)BE:CE=3:2BE=3,利用勾股定理可得AE=5;

(2)由PFBE,據(jù)此求得AF=t,再分0≤t≤4t>4兩種情況分別求出EF即可得;

(3)由以點F為圓心的⊙F恰好與直線AB、BC相切時PF=PG,再分t=0t=4、0<t<4、t>4這三種情況分別求解可得;

(4)連接CC′,交直線AE于點Q,先證CQE∽△ABE,據(jù)此求得CQ=、CC′=2CQ=,再證ABF∽△CBC′,據(jù)此求得AF=,根據(jù)可得答案.

1)∵四邊形ABCD為矩形,

BC=AD=5,

BE:CE=3:2,

BE=3、CE=2,

AE==5,

故答案為:5;

(2)如圖1,當(dāng)點P在線段AB上運動時,即0≤t≤4,

PFBE,

,即,

AF=,

EF=AE﹣AF=5﹣,即y=5﹣ (0≤t≤4);

如圖2,當(dāng)點P在射線AB上運動時,即t>4,

此時EF=AF﹣AE=﹣5,即y=﹣5 (t>4);

綜上,y= ;

(3)以點F為圓心的⊙F恰好與直線AB、BC相切時,PF=PG,

分以下三種情況:①當(dāng)t=0t=4時,顯然符合條件的⊙F不存在;

②當(dāng)0<t<4時,如圖1,作FGBC于點G,

FG=BP=4﹣t,

PFBC,

∴△APF∽△ABE,

,即,

PF=t,

4﹣t=t可得t=,

則此時⊙F的半徑PF=;

③當(dāng)t>4時,如圖2,同理可得FG=t﹣4、PF=t,

t﹣4=t可得t=16,

則此時⊙F的半徑PF=12;

(4)如圖3,連接CC′,交直線AE于點Q,

∵△CAQ≌△C′AQ,

AC=AC′、CAQ=C′AQ,

則∠CQE=ABE=90°,

∵∠CEQ=AEB,

∴△CQE∽△ABE,

,即

CQ=,

CC′=2CQ=,

∵∠ABF=CBC′、BAE=ECC′,

∴△ABF∽△CBC′,

,,

解得: AF=

由(2)知AF=t,

解得:t=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018112日﹣4日,江西省中小學(xué)生研學(xué)實踐教育推進(jìn)會和全國中小學(xué)綜合實踐活動(研學(xué)實踐教育)論壇相繼在撫州舉行.為拓寬學(xué)生視野,引導(dǎo)學(xué)生主動適應(yīng)社會,促進(jìn)書本知識和生活經(jīng)驗的深度融合,撫州市某中學(xué)決定組織部分班級去仙蓋山開展研學(xué)旅行活動,在參加此次活動的師生中,若每位老師帶17個學(xué)生,還剩12個學(xué)生沒人帶;若每位老師帶18個學(xué)生,就有一位老師少帶4個學(xué)生.參加此次研學(xué)旅行活動的老師和學(xué)生各有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a、b、c滿足|a﹣|++(c﹣42=0.

(1)求a、b、c的值;

(2)判斷以a、b、c為邊能否構(gòu)成三角形?若能構(gòu)成三角形,此三角形是什么形狀?并求出三角形的面積;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,AC平分∠BAD,CEABE,CDADF,且BC=DC

1BEDF是否相等?請說明理由;

2)若DF=1,AD=3,求AB的長;

3)若ABC的面積是23ADC面積是18,直接寫出BEC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中∠ACB90°,CDAB邊上的高,∠BAC的角平分線AFCDE,則△CEF必為(

A.等腰三角形B.等邊三角形C.直角三角形D.等腰直角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個梯子AB2.5米,頂端A靠在墻AC上,這時梯子下端B與墻角C距離為1.5米,梯子滑動后停在DE的位置上,測得BD長為0.5米,則梯子頂端A下落了( 。┟祝

A. 0.5 B. 1 C. 1.5 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在網(wǎng)格中,小正方形邊長為a,則圖中是直角三角形的是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD沿對角線BD折疊,點C落在點E處,BEAD于點F,已知∠BDC=62°,則∠DFE的度數(shù)為( 。

A. 31° B. 28° C. 62° D. 56°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知甲、乙兩袋中各裝有若干顆球,其種類與數(shù)量如表所示今阿馮打算從甲袋中抽出一顆球,小潘打算從乙袋中抽出一顆球,若甲袋中每顆球被抽出的機會相等,且乙袋中每顆球被抽出的機會相等,則下列敘述何者正確?( )

甲袋

乙袋

紅球

2

4

黃球

2

2

綠球

1

4

總計

5

10

A. 阿馮抽出紅球的機率比小潘抽出紅球的機率大

B. 阿馮抽出紅球的機率比小潘抽出紅球的機率小

C. 阿馮抽出黃球的機率比小潘抽出黃球的機率大

D. 阿馮抽出黃球的機率比小潘抽出黃球的機率小

查看答案和解析>>

同步練習(xí)冊答案