【題目】如圖,對(duì)稱軸為直線的拋物線與x軸相交于A、B兩點(diǎn),其中A點(diǎn)的坐標(biāo)為(-3,0)。
(1)求點(diǎn)B的坐標(biāo);
(2)已知,C為拋物線與y軸的交點(diǎn)。
①若點(diǎn)P在拋物線上,且,求點(diǎn)P的坐標(biāo);
②設(shè)點(diǎn)Q是線段AC上的動(dòng)點(diǎn),作QD⊥x軸交拋物線于點(diǎn)D,求線段QD長度的最大值。
【答案】解:(1)∵A、B兩點(diǎn)關(guān)于對(duì)稱軸對(duì)稱 ,且A點(diǎn)的坐標(biāo)為(-3,0),
∴點(diǎn)B的坐標(biāo)為(1,0)。
(2)①∵拋物線,對(duì)稱軸為,經(jīng)過點(diǎn)A(-3,0),
∴,解得。
∴拋物線的解析式為。
∴B點(diǎn)的坐標(biāo)為(0,-3)。∴OB=1,OC=3。∴。
設(shè)點(diǎn)P的坐標(biāo)為,則。
∵,∴,解得。
當(dāng)時(shí),;當(dāng)時(shí),,
∴點(diǎn)P的坐標(biāo)為(2,5)或(-2,-3)。
②設(shè)直線AC的解析式為,將點(diǎn)A,C的坐標(biāo)代入,得:
,解得:。
∴直線AC的解析式為。
∵點(diǎn)Q在線段AC上,∴設(shè)點(diǎn)Q的坐標(biāo)為。
又∵QD⊥x軸交拋物線于點(diǎn)D,∴點(diǎn)D的坐標(biāo)為。
∴。
∵,∴線段QD長度的最大值為。
【解析】(1)由拋物線的對(duì)稱性直接得點(diǎn)B的坐標(biāo)。
(2)①用待定系數(shù)法求出拋物線的解析式,從而可得點(diǎn)C的坐標(biāo),得到,設(shè)出點(diǎn)P 的坐標(biāo),根據(jù)列式求解即可求得點(diǎn)P的坐標(biāo)。
②用待定系數(shù)法求出直線AC的解析式,由點(diǎn)Q在線段AC上,可設(shè)點(diǎn)Q的坐標(biāo)為,從而由QD⊥x軸交拋物線于點(diǎn)D,得點(diǎn)D的坐標(biāo)為,從而線段QD等于兩點(diǎn)縱坐標(biāo)之差,列出函數(shù)關(guān)系式應(yīng)用二次函數(shù)最值原理求解。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC,∠C=90°,AC=12,BC=6,一條線段PQ=AB,P、Q兩點(diǎn)分別在AC和過點(diǎn)A且垂直于AC的射線AX上運(yùn)動(dòng),要使△ABC和△QPA全等,則AP= ______ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠A=∠D,AB=DB,點(diǎn)E在AC邊上,∠AED=∠CBE,AB和DE相交于點(diǎn)F.
(1)求證:△ABC≌△DBE.
(2)若∠CBE=50°,求∠BED的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA、PB切⊙O于A、B,點(diǎn)C在弧AB上,DE切⊙O于C,交PA、PB于D、E,已知PO=13cm,⊙O的半徑為5cm,則△PDE的周長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了落實(shí)黨的“精準(zhǔn)扶貧”政策,A、B兩城決定向C、D兩鄉(xiāng)運(yùn)送肥料以支持農(nóng)村生產(chǎn),已知A、B兩城共有肥料500噸,其中A城肥料比B城少100噸,從A城往C、D兩鄉(xiāng)運(yùn)肥料的費(fèi)用分別為20元/噸和25元/噸;從B城往C、D兩鄉(xiāng)運(yùn)肥料的費(fèi)用分別為15元/噸和24元/噸.現(xiàn)C鄉(xiāng)需要肥料240噸,D鄉(xiāng)需要肥料260噸.
(1)A城和B城各有多少噸肥料?
(2)設(shè)從A城運(yùn)往C鄉(xiāng)肥料x噸,總運(yùn)費(fèi)為y元,求出最少總運(yùn)費(fèi).
(3)由于更換車型,使A城運(yùn)往C鄉(xiāng)的運(yùn)費(fèi)每噸減少a(0<a<6)元,這時(shí)怎樣調(diào)運(yùn)才能使總運(yùn)費(fèi)最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】古埃及人用下面的方法得到直角三角形,把一根長繩打上等距離的13個(gè)結(jié)(12段),然后用樁釘釘成一個(gè)三角形,如圖1,其中∠C便是直角.
(1)請(qǐng)你選擇古埃及人得到直角三角形這種方法的理由 (填A或B)
A.勾股定理:在直角三角形邊的兩直角邊的平方和等于斜邊的平方
B.勾股定理逆定理:如果三角形的三邊長a、b、c有關(guān)系:a2+b2=c2,那么這個(gè)三角形是直角三角形
(2)如果三個(gè)正整數(shù)a、b、c滿足a2+b2=c2,那么我們就稱 a、b、c是一組勾股數(shù),請(qǐng)你寫出一組勾股數(shù)
(3)仿照上面的方法,再結(jié)合上面你寫出的勾股數(shù),你能否只用繩子,設(shè)計(jì)一種不同于上面的方法得到一個(gè)直角三角形(在圖2中,只需畫出示意圖.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一個(gè)晾衣架放置在水平地面上,在其示意圖中,支架OA、OB的長均為100cm,支架OA與水平晾衣架OC的夾角∠AOC為59°,則支架兩個(gè)著地點(diǎn)之間的距離AB為_____cm.
(參考數(shù)據(jù):sin59°≈0.86,cos59°≈0.52,tan59°≈1.66)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的直角坐標(biāo)系中,每個(gè)小方格都是邊長為1的正方形,△ABC的頂點(diǎn)均在格點(diǎn)上,點(diǎn)A的坐標(biāo)是(﹣3,﹣1).
(1)將△ABC沿y軸正方向平移3個(gè)單位得到△A1B1C1,畫出△A1B1C1,并寫出點(diǎn)B1的坐標(biāo);
(2)畫出△A1B1C1關(guān)于y軸對(duì)稱的△A2B2C2,并寫出點(diǎn)C2的坐標(biāo);
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】石景山區(qū)八角北路有一塊三角形空地(如圖1)準(zhǔn)備綠化,擬從點(diǎn)A出發(fā),將△ABC分成面積相等的三個(gè)三角形,栽種三種不同的花草.
下面是小美的設(shè)計(jì)(如圖2).
作法:(1)作射線BM;
(2)在射線BM上順次截取BB1=B1B2=B2B3;
(3)連接B3C,分別過B1、B2作B1C1∥B2C2∥B3C,交BC于點(diǎn)C1、C2;
(4)連接AC1、AC2.則.
請(qǐng)回答,成立的理由是:
①_____;
②_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com