【題目】已知關(guān)于x的方程kx2+(2k+1)x+2=0.
(1)求證:無(wú)論k取任何實(shí)數(shù)時(shí),方程總有實(shí)數(shù)根;
(2)當(dāng)拋物線y=kx2+(2k+1)x+2圖象與x軸兩個(gè)交點(diǎn)的橫坐標(biāo)均為整數(shù),且k為正整數(shù)時(shí),若P(a,y1),Q(1,y2)是此拋物線上的兩點(diǎn),且y1>y2 , 請(qǐng)結(jié)合函數(shù)圖象確定實(shí)數(shù)a的取值范圍;
(3)已知拋物線y=kx2+(2k+1)x+2恒過(guò)定點(diǎn),求出定點(diǎn)坐標(biāo).

【答案】
(1)證明:①當(dāng)k=0時(shí),方程為x+2=0,所以x=﹣2,方程有實(shí)數(shù)根,

②當(dāng)k≠0時(shí),∵△=(2k+1)2﹣4k×2=(2k﹣1)2≥0,即△≥0,

∴無(wú)論k取任何實(shí)數(shù)時(shí),方程總有實(shí)數(shù)根;


(2)解:令y=0,則kx2+(2k+1)x+2=0,

解關(guān)于x的一元二次方程,得x1=﹣2,x2=﹣

∵二次函數(shù)的圖象與x軸兩個(gè)交點(diǎn)的橫坐標(biāo)均為整數(shù),且k為正整數(shù),

∴k=1.

∴該拋物線解析式為y=x2+3x+2,

由圖象得到:當(dāng)y1>y2時(shí),a>1或a<﹣4.


(3)解:依題意得kx2+(2k+1)x+2﹣y=0恒成立,即k(x2+2x)+x﹣y+2=0恒成立,

,

解得

所以該拋物線恒過(guò)定點(diǎn)(0,2)、(﹣2,0).


【解析】(1)分情況討論:①該方程是一元一次方程時(shí),②該方程是一元二次方程時(shí);(2)通過(guò)解kx2+(2k+1)x+2=0得到k=1,由此得到該拋物線解析式為y=x2+3x+2,結(jié)合圖象回答問(wèn)題即可;(3)根據(jù)題意kx2+(2k+1)x+2﹣y=0恒成立,由此列出關(guān)于x、y的方程組,通過(guò)解方程組求得該定點(diǎn)坐標(biāo).
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解求根公式的相關(guān)知識(shí),掌握根的判別式△=b2-4ac,這里可以分為3種情況:1、當(dāng)△>0時(shí),一元二次方程有2個(gè)不相等的實(shí)數(shù)根2、當(dāng)△=0時(shí),一元二次方程有2個(gè)相同的實(shí)數(shù)根3、當(dāng)△<0時(shí),一元二次方程沒(méi)有實(shí)數(shù)根,以及對(duì)拋物線與坐標(biāo)軸的交點(diǎn)的理解,了解一元二次方程的解是其對(duì)應(yīng)的二次函數(shù)的圖像與x軸的交點(diǎn)坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點(diǎn).當(dāng)b2-4ac>0時(shí),圖像與x軸有兩個(gè)交點(diǎn);當(dāng)b2-4ac=0時(shí),圖像與x軸有一個(gè)交點(diǎn);當(dāng)b2-4ac<0時(shí),圖像與x軸沒(méi)有交點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)OAC的中點(diǎn),AC2AB,延長(zhǎng)ABG,使BGAB,連接GOBCE,延長(zhǎng)GOADF,連接AE

求證:(1ABC≌△AOG

2)猜測(cè)四邊形AECF的形狀并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:,OBOC、OM、ON內(nèi)的射線.

如圖1,若OM平分ON平分當(dāng)OB繞點(diǎn)O內(nèi)旋轉(zhuǎn)時(shí),則的大小為______;

如圖2,若OM平分ON平分當(dāng)繞點(diǎn)O內(nèi)旋轉(zhuǎn)時(shí),求的大;

的條件下,若,當(dāng)內(nèi)繞著點(diǎn)O秒的速度逆時(shí)針旋轉(zhuǎn)t秒時(shí),中的一個(gè)角的度數(shù)恰好是另一個(gè)角的度數(shù)的兩倍,求t的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算: + ﹣6sin45°+(﹣1)2009

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:,OBOC、OM、ON內(nèi)的射線.

如圖1,若OM平分,ON平分當(dāng)OB繞點(diǎn)O內(nèi)旋轉(zhuǎn)時(shí),則的大小為______;

如圖2,若,OM平分,ON平分當(dāng)繞點(diǎn)O內(nèi)旋轉(zhuǎn)時(shí),求的大。

的條件下,若,當(dāng)內(nèi)繞著點(diǎn)O秒的速度逆時(shí)針旋轉(zhuǎn)t秒時(shí),中的一個(gè)角的度數(shù)恰好是另一個(gè)角的度數(shù)的兩倍,求t的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩地相距300km,一輛貨車和一輛轎車先后從甲地出發(fā)向乙地.如圖,線段OA表示貨車離甲地距離y(km)與時(shí)間x(h)之間的函數(shù)關(guān)系,折線BCDE表示轎車離甲地距離y(km)與時(shí)間x(h)之間的函數(shù)關(guān)系.請(qǐng)根據(jù)圖象,解答下列問(wèn)題:

(1)線段CD表示轎車在途中停留了 h;

(2)求線段DE對(duì)應(yīng)的函數(shù)解析式;

(3)求轎車從甲地出發(fā)后經(jīng)過(guò)多長(zhǎng)時(shí)間追上貨車.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①所示,正方形ABCD的邊長(zhǎng)為6 cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),在正方形的邊上沿A→B→C→D運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t(s),三角形APD的面積為S(cm2),S與t的函數(shù)圖象如圖②所示,請(qǐng)回答下列問(wèn)題:

(1)點(diǎn)P在AB上運(yùn)動(dòng)的時(shí)間為_(kāi)_______s,在CD上運(yùn)動(dòng)的速度為_(kāi)_______cm/s,三角形APD的面積S的最大值為_(kāi)_______cm2;

(2)求出點(diǎn)P在CD上運(yùn)動(dòng)時(shí)S與t之間的函數(shù)表達(dá)式;

(3)當(dāng)t為何值時(shí),三角形APD的面積為10 cm2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的圖象記錄了某地一月份某天的溫度隨時(shí)間變化.的情況,請(qǐng)你仔細(xì)觀察圖象回答下面的問(wèn)題:

(1)20時(shí)的溫度是 ,溫度是0℃時(shí)的時(shí)刻是 時(shí),最暖和的時(shí)刻是 時(shí),溫度在-3℃以下的持續(xù)時(shí)間為 時(shí);

(2)從圖象中還能獲取哪些信息?(寫(xiě)出1~2條即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)M,N在半圓的直徑AB上,點(diǎn)P,Q在 上,四邊形MNPQ為正方形.若半圓的半徑為 ,則正方形的邊長(zhǎng)為

查看答案和解析>>

同步練習(xí)冊(cè)答案