【題目】如圖,已知△ABC中,∠ABC=90°,AB=BC,三角形的頂點在相互平行的三條直線、、上,且,,之間的距離為2 , ,之間的距離為3 ,則AC2= _______.

【答案】68

【解析】

A、C點作l3的垂線構(gòu)造出直角三角形,根據(jù)三角形全等求出BE=AD=3,再由勾股定理求出BC的長,再利用勾股定理即可求出AC的長,最后得到AC2.

AD⊥l3D,CE⊥l3E,

∵∠ABC=90°,∴ABD+CBE=90°,

又∠DAB+ ABD=90°,

∴∠BAD=CBE,

在△ABD和△BEC中,

,

∴△ABD≌△BCE (AAS),

,BE=AD=3,

Rt△BCE中,根據(jù)勾股定理,得,

Rt△ABC中,根據(jù)勾股定理,得 .故答案是68.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB,BC,CD分別與⊙O相切于E,F(xiàn),G.且AB∥CD.BO=6cm,CO=8cm.
(1)求證:BO⊥CO;
(2)求BE和CG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】⊙O的半徑為5,AB是⊙O的直徑,點C在⊙O上,點D在直線AB上.
(1)如圖(1),已知∠BCD=∠BAC,求證:CD是⊙O的切線;
(2)如圖(2),CD與⊙O交于另一點E.BD:DE:EC=2:3:5,求圓心O到直線CD的距離;
(3)若圖(2)中的點D是直線AB上的動點,點D在運動過程中,會出現(xiàn)C,D,E在三點中,其中一點是另外兩點連線的中點的情形,問這樣的情況出現(xiàn)幾次?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小王家距上班地點18千米,他用乘公交車的方式平均每小時行駛的路程比他用自駕車的方式平均每小時行駛的路程的2倍還9千米.他從家出發(fā)到達上班地點,乘公交車方式所用時間是自駕車方式所用時間的.小王用自駕車方式上班平均每小時行駛( 。

A. 26千米 B. 27千米 C. 28千米 D. 30千米

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中國“蛟龍”號深潛器目前最大深潛極限為7062.68米.某天該深潛器在海面下1800米的A點處作業(yè)(如圖),測得正前方海底沉船C的俯角為45°,該深潛器在同一深度向正前方直線航行2000米到B點,此時測得海底沉船C的俯角為60°.

(1)沉船C是否在“蛟龍”號深潛極限范圍內(nèi)?并說明理由;
(2)由于海流原因,“蛟龍”號需在B點處馬上上浮,若平均垂直上浮速度為2000米/時,求“蛟龍”號上浮回到海面的時間.(參考數(shù)據(jù): ≈1.414, ≈1.732)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AC=BC=5,AB=6,將它沿AB翻折得到△ABD,點P、E、F分別為線段AB、AD、DB的任意點,則PE+PF的最小值是________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,分析下列四個結(jié)論: ①abc<0;②b2﹣4ac>0;③3a+c>0;④(a+c)2<b2 ,
其中正確的結(jié)論有(

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,點E是對角線AC上一點,且CE=CD,過點E作EF⊥AC交AD于點F,連接BE.
(1)求證:DF=AE;
(2)當AB=2時,求BE2的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】由甲、乙兩個工程隊承包某校園綠化工程,甲、乙兩隊單獨完成這項工程所需時間比是2:3,兩隊合做6天可以完成.

(1)求兩隊單獨完成此工程各需多少天?

(2)甲乙兩隊合做6天完成任務(wù)后,學校付給他們30000元報酬,若按各自完成的工程量分配這筆錢,問甲、乙兩隊各得到多少元?

查看答案和解析>>

同步練習冊答案