已知x=3是關(guān)于x的不等式的解,求a的取值范圍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在△ABC中,AB=AC,D是BC的中點(diǎn),連結(jié)AD,在AD的延長線上取一點(diǎn)E,連結(jié)BE,CE.
(1)求證:△ABE≌△ACE
(2)當(dāng)AE與AD滿足什么數(shù)量關(guān)系時(shí),四邊形ABEC是菱形?
并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
9.6 解:∵四邊形ABCD是平行四邊形(已知),
∴OA=OC(平行四邊形的對(duì)角線相互平分),AB∥CD(平行四邊形的對(duì)邊相互平行),
∴∠DCO=∠BAC(兩直線平行,內(nèi)錯(cuò)角相等);
在△AFO和△CEO中,
,
則△AFO≌△CEO(ASA),
∴OF=OE,CE=AF(全等三角形的對(duì)應(yīng)邊相等);
又∵AD=BC(平行四邊形的對(duì)邊相等),AB=4,AD=3,OF=1.3,
∴四邊形BCEF的周長為:BC+EC+OE+OF+BF=AD+AF+2OF+BF=AD+AB+2OF=9.6;
故答案是:9.6.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知:∠MON=30°,點(diǎn)A1、A2、A3在射線ON上,點(diǎn)B1、B2、B3…在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,若OA1=1,則△A6B6A7的邊長為.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD⊥直線m,CE⊥直線 m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.
(2)如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=120°.請(qǐng)問結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說明理由.
(3)拓展與應(yīng)用:如圖(3),D、E是D、A、E三點(diǎn)所在直線m上的兩動(dòng)點(diǎn)(D、A、E三點(diǎn)互不重合),點(diǎn)F為∠BAC平分線上的一點(diǎn),且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試證明FD=FE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在四邊形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,下列條件不能判定四邊形ABCD為平行四邊形的是()
A. AB∥CD,AD∥BC B. OA=OC,OB=OD C. AD=BC,AB∥CD D. AB=CD,AD=BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,修公路遇到一座山,于是要修一條隧道.為了加快施工進(jìn)度,想在小山的另一側(cè)同時(shí)施工.為了使山的另一側(cè)的開挖點(diǎn)C在AB的延長線上,設(shè)想過C點(diǎn)作直線AB的垂線L,過點(diǎn)B作一直線(在山的旁邊經(jīng)過),與L相交于D點(diǎn),經(jīng)測量∠ABD=135°,BD=800米,求直線L上距離D點(diǎn)多遠(yuǎn)的C處開挖?(≈1.414,精確到1米)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,直線AB∥CD,一個(gè)含60°角的直角三角板EFG(∠E=60°)的直角頂點(diǎn)F在直線AB上,斜邊EG與AB相交于點(diǎn)H,CD與FG相交于點(diǎn)M.若∠AHG=50°,則∠FMD等于( )
A. 10° B. 20° C. 30° D. 50°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com