【題目】(1)如圖1,點P是平行四邊形ABCD對角線AC、BD的交點,若S△PAB=S1,S△PBC=S2,S△PCD=S3,S△PAD=S4則S1、S2、S3、S4的關系為S1=S2=S3=S4.請你說明理由;
(2)變式1:如圖2,點P是平行四邊形ABCD內一點,連接PA、PB、PC、PD.若S△PAB=S1,S△PBC=S2,S△PCD=S3,S△PAD=S4,寫出S1、S2、S3、S4的關系式;
(3)變式2:如圖3,點P是四邊形ABCD對角線AC、BD的交點若S△PAB=S1,S△PBC=S2,S△PCD=S3,S△PAD=S4,寫出S1、S2、S3、S4的關系式.請你說明理由.
【答案】(1)理由見解析;(2)S1+S3=S2+S4;(3)S1S3=S2S4;理由見解析
【解析】
(1)根據(jù)平行四邊形的對角相互相平分與如果三角形等底等高面積相同,得解;
(2)可以根據(jù)△ABD≌△CDB求得;
(3)由△ABP中AP邊上的高與△BCP中CP邊上的高相同與△PAD中AP邊上的高與△PCD中CP邊上的高相同,可得即,即,所以,即.
(1)∵四邊形ABCD是平行四邊形,
∴AP=CP,
又∵△ABP中AP邊上的高與△BCP中CP邊上的高相同,
∴S△PAB=S△PBC,
即S1=S2,
同理可證S2=S3S3=S4,
∴S1=S2=S3=S4;
(2)S1+S3=S2+S4;
(3);
理由:
∵△ABP中AP邊上的高與△BCP中CP邊上的高相同,
∴即,
∵△PAD中AP邊上的高與△PCD中CP邊上的高相同,
∴即,
∴,
∴.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰直角△ABC中,∠C=90°,點O是AB的中點,邊AC的長為,將一塊邊長足夠大的三角板的直角頂點放在點O處,將三角板繞點O旋轉,始終保持三角板的一條直角邊與 AC相交,交點為點D,另一條直角邊與BC相交,交點為點E.證明:等腰直角三角形ABC的邊被三角板覆蓋部分的兩條線段CD與CE長度之和為定值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=a1(x﹣2)2+2與y=a2(x﹣2)2﹣3的頂點分別為A,B,與x軸分別交于點O,C,D,E.若點D的坐標為(﹣1,0),則△ADE與△BOC的面積比為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,長方形放置在平面直角坐標系中,已知點,點,動點從出發(fā),沿以每秒個單位的速度運動,同時,動點從出發(fā),沿以每秒個單位的速度運動.當其中一點到達點時,兩動點同時停止運動設運動時間為.
(1)當______時,點追上點,此時點的坐標為_______.
(2)當時,分別取、的中點、,如果四邊形的面積等于,請求出時間的取值;
(3)如圖2,連接,已知,在(2)問的條件下,過點作于點,問在長方形的四條邊上是否存在點,使得線段,若存在,請直接寫出點的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,P是CD上一點,且AP和BP分別平分∠DAB和∠CBA.
(1)求∠APB的度數(shù);
(2)如果AD=5 cm,AP=8 cm,求△APB的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】規(guī)定兩數(shù)a,b之間的一種運算,記作(a,b):如果,那么(a,b)=c.
例如:因為23=8,所以(2,8)=3.
(1)根據(jù)上述規(guī)定,填空:
(3,9)=_____,(5,125)=_____,(,)=_____,(-2,-32)=_____.
(2)令,,,試說明下列等式成立的理由:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC為等腰直角三角形,∠ABC=90°,AB=BC,點A在x軸的負半軸上,點B是y軸上的一個動點,點C在點B的上方,
(1)如圖1當點A的坐標為(﹣3,0),點B的坐標為(0,1)時,求點C的坐標;
(2)設點A的坐標為(a,0),點B的坐標為(0,b).過點C作CD⊥y軸于點D,在點B運動過程中(不包含△ABC的一邊與坐標軸重合的情況),猜想線段OD的長與a、b的數(shù)量關系,并說明理由;
(3)在(2)的條件下如圖4,當x軸平分∠BAC時,BC交x軸于點E,過點作CF⊥x軸于點F.說明此時線段CF與AE的數(shù)量關系(用含a、b的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD、AE分別是△ABC的高和角平分線,∠B=30°,∠C=50°。
(1)求∠DAE的度數(shù);
(2)試寫出∠DAE與∠C、∠B之間的數(shù)量關系(不必說明理由)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com