【題目】如圖,在△ABC中,已知AC=BC=5,AB=6,點E是線段AB上的動點(不與端點重合),點F是線段AC上的動點,連接CE、EF,若在點E、點F的運動過程中,始終保證∠CEF=∠B.當(dāng)以點C為圓心,以CF為半徑的圓與AB相切時,則BE的長為_________

【答案】1或5

【解析】如圖,設(shè)⊙CBA切于點M,則CM=CF,CM⊥BA,根據(jù)等腰三角形的三線合一的性質(zhì)可得BM=AM==3,在Rt△AMC中,根據(jù)勾股定理求得CM=CF= 4,從而得AF=1,再證明△AEF∽△BCE,根據(jù)相似三角形的性質(zhì)可得,設(shè)BE長為x,則EA長為6-x,可得,解方程求得x的值,即可得BE的長.

如圖,設(shè)⊙CBA切于點M,則CM=CF,CM⊥BA,

∵CA=CB,CM⊥BA,AB=6,

∴BM=AM==3,

Rt△AMC中,AC=5,AM=3,

∴CM=CF= 4,

∴AF=1,

∵CA=CB,

∴∠B=∠A,

∵∠B+∠BCE=∠CEA=∠CEF+∠FEA,

∵∠CEF=∠B,

∴∠AEF=∠BCE;

∴△AEF∽△BCE,

,

設(shè)BE長為x,則EA長為6-x

,

解得:x1=1,x2=5,

∴BE的長為15.

故答案為:15.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在四邊形ABCD中,點EAD上,∠BCE=ACD=90°,BAC=DBC=CE

(1)求證:AC=CD;

(2)若∠ACB=30°,D=45°,求∠AEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明家需要用鋼管做防盜窗,按設(shè)計要求,其中需要長為 0.8m,2.5m 且粗細相同的鋼管分別為 100 根,32 根,并要求這些用料不能是焊接而成的.現(xiàn)鋼材市場的這種規(guī)格的鋼管每根為 6m

1)試問一根 6m 長的圓鋼管有哪些裁剪方法呢?請?zhí)顚懴驴眨ㄓ嗔献鲝U).

方法①:當(dāng)只裁剪長為 0.8m 的用料時,最多可剪 根;

方法②:當(dāng)先剪下 1 2.5m 的用料時,余下部分最多能剪 0.8m 長的用料 根;

方法③:當(dāng)先剪下 2 2.5m 的用料時,余下部分最多能剪 0.8m 長的用料 根.

2)分別用(1)中的方法②和方法③各裁剪多少根 6m 長的鋼管,才能剛好得到所需要的相應(yīng)數(shù)量的材料?

3)試探究:除(2)中方案外,在(1)中還有哪兩種方法聯(lián)合,所需要 6m 長的鋼管與(2 中根數(shù)相同?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OAC的頂點O在坐標(biāo)原點,OA邊在x軸上,OA=2,AC=1,把OAC繞點A按順時針方向旋轉(zhuǎn)到O′AC′,使得點O′的坐標(biāo)是(1,),則在旋轉(zhuǎn)過程中線段OC掃過部分(陰影部分)的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P是⊙O外的一點,PA、PB是⊙O的兩條切線,A、B是切點,POAB于點F,延長BO交⊙O于點C,交PA的延長交于點Q,連結(jié)AC.

(1)求證:ACPO;

(2)設(shè)DPB的中點,QDAB于點E,若⊙O的半徑為3,CQ=2,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】垃圾的分類處理與回收利用,可以減少污染,節(jié)省資源.某城市環(huán)保部門為了提高宣傳實效,抽樣調(diào)查了部分居民小區(qū)一段時間內(nèi)生活垃圾的分類情況,其相關(guān)信息如下:

根據(jù)圖表解答下列問題:

1)請將條形統(tǒng)計圖補充完整;

2)在扇形統(tǒng)計圖樣中,產(chǎn)生的有害垃圾C所對應(yīng)的圓心角 度;

3)調(diào)查發(fā)現(xiàn),在可回收物中塑料類垃圾占13%,每回收1噸塑料類垃圾可獲得0.5噸二級原料.假設(shè)該城市每月產(chǎn)生的生活垃圾為1000噸,且全部分類處理,那么每月回收的塑料類垃圾可以獲得多少噸二級原料?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,過點A(2,0)的直線y軸交于點B,與雙曲線交于點P,點P位于y軸左側(cè),且到y軸的距離為1,已知tan∠OAB=

(1)分別求出直線與雙曲線相應(yīng)的函數(shù)表達式;

(2)觀察圖象,直接寫出不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在平面直角坐標(biāo)系中,點軸上,點、軸上,,,點的坐標(biāo)是

1)求三個頂點、、的坐標(biāo);

2)連接、,并用含字母的式子表示的面積();

3)在(2)問的條件下,是否存在點,使的面積等于的面積?如果存在,請求出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程(組)或不等式(組)解應(yīng)用題:

1)甲工人接到240個零件的任務(wù),工作1小時后,因要提前完成任務(wù),調(diào)來乙和甲合作,合做了5小時完成.已知甲每小時比乙少做4個,那么甲、乙每小時各做多少個?

2)某工廠準(zhǔn)備購進兩種機器共20臺用于生產(chǎn)零件,經(jīng)調(diào)查2型機器和1型機器價格為18萬元,1型機器和2型機器價格為21萬元.

①求一臺型機器和一臺型機器價格分別是多少萬元?

②已知1型機器每月可加工零件400個,1型機器每月可加工零件800個,經(jīng)預(yù)算購買兩種機器的價格不超過140萬元,每月兩種機器加工零件總數(shù)不低于12400個,那么有哪幾種購買方案,哪種方案最省錢?

查看答案和解析>>

同步練習(xí)冊答案