精英家教網 > 初中數學 > 題目詳情

【題目】如圖,AC是ABCD的對角線,∠BAC=∠DAC.
(1)求證:AB=BC;
(2)若AB=2,AC=2 ,求ABCD的面積.

【答案】
(1)證明:∵四邊形ABCD是平行四邊形,

∴AD∥BC,

∴∠DAC=∠BCA,

∵∠BAC=∠DAC,

∴∠BAC=∠BCA,

∴AB=BC


(2)解:連接BD交AC于O,如圖所示:

∵四邊形ABCD是平行四邊形,AB=BC,

∴四邊形ABCD是菱形,

∴AC⊥BD,OA=OC= AC= ,OB=OD= BD,

∴OB= = =1,

∴BD=2OB=2,

ABCD的面積= ACBD= ×2 ×2=2


【解析】(1)由平行四邊形的性質得出∠DAC=∠BCA,再由已知條件得出∠BAC=∠BCA,即可得出AB=BC;(2)連接BD交AC于O,證明四邊形ABCD是菱形,得出AC⊥BD,OA=OC= AC= ,OB=OD= BD,由勾股定理求出OB,得出BD,ABCD的面積= ACBD,即可得出結果.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,已知反比例函數y=的圖象經過點A(-1, ).

(1)試確定此反比例函數的解析式;

(2)點O是坐標原點,將線段OA繞點O逆時針旋轉30°后得到線段OB,求出點B的坐標,并判斷點B是否在此反比例函數的圖象上.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知直線a,b,c,d,e,且∠1=∠2,∠3=∠4,則a與c平行嗎?為什么?

解:a與c平行.

理由:因為∠1=∠2(_________________),

所以a∥b(_________________).

因為∠3=∠4(_________________),

所以b∥c(_________________).

所以a∥c(_________________).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABCD對角線AC、BD相交于點O,E,F分別是OA,OC的中點,連接BE,DF.
(1)根據題意,補全圖形;
(2)求證:BE=DF.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知AF平分∠BAC,DE平分∠BDF,且∠1=∠2.

(1)DF∥AC嗎,為什么?

(2)DE與AF的位置關系又如何?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】等腰三角形的兩邊長是37,則這個三角形的周長等于_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線ABCD相交于O點,OMAB.

1)若∠1=2,求∠NOD;

2)若∠1=BOC,求∠AOC與∠MOD.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知關于x的一元二次方程(a-2x2-x+a2-4=0的一個根是0,那么a=________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知一元二次方程x2+6x+c0有一個根為﹣2,則另一個根為( 。

A.2B.3C.4D.8

查看答案和解析>>

同步練習冊答案