如圖,等腰梯形ABCD中,AD∥BC,點E,F(xiàn)在BC上,且BE=FC,連接DE,AF.求證:DE=AF.
證明:∵四邊形ABCD為等腰梯形且AD∥BC,
∴AB=DC∠B=∠C,(1分)
又∵BE=FC,
∴BE+EF=FC+EF即BF=CE,(2分)
∴△ABF≌△DCE,(3分)
∴DE=AF.(4分)
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB于點D,點E是AB的中點,∠BCD=20°,則∠ACE=(   )
A.20°B.30°C.45°D.60°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(本題滿分8分)已知矩形ABCD的對角線相交于點O,M 、N分別是OD、OC上異于O、C、D的點。
(1)請你在下列條件①DM=CN,②OM=ON,③MN是△OCD的中位線,④MN∥AB中任選一個添加條件(或添加一個你認為更滿意的其他條件),使四邊形ABNM為等腰梯形,你添加的條件是               。
(2)添加條件后,請證明四邊形ABNM是等腰梯形。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

.如圖(1),在直角△ABC中, ∠ACB=90,CD⊥AB,垂足為D,點E在AC上,BE交CD于點G,EF⊥BE交AB于點F,若AC=mBC,CE=nEA(m,n為實數(shù)).
試探究線段EF與EG的數(shù)量關系.

(1)如圖(2),當m=1,n=1時,EF與EG的數(shù)量關系是                  
證明:
(2) 如圖(3),當m=1,n為任意實數(shù)時,EF與EG的數(shù)量關系是                  
證明
(3)如圖(1),當m,n均為任意實數(shù)時,EF與EG的數(shù)量關系是                  
(寫出關系式,不必證明)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在梯形ABCD中,AD∥BC,AD=AB,過點A作AE∥DB交CB的延長線于點E.
(1)求證:∠ABD=∠CBD;(3分)
(2)若∠C=2∠E,求證:AB=DC;(4分)
(3)在(2)的條件下,求四邊形AEBD的面積.(5分)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

(2011?德州)如圖,D,E,F(xiàn)分別為△ABC三邊的中點,則圖中平行四邊形的個數(shù)為 

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

(2011•桂林)如圖,等腰梯形ABCD中,AB∥DC,BE∥AD,梯形ABCD的周長為26,DE=4,則△BEC的周長為       

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(2011•濰坊)已知正方形ABCD的邊長為a,兩條對角線AC、BD相交于點O,P是射線AB上任意一點,過P點分別作直線AC、BD的垂線PE、PF,垂足為E、F.

(1)如圖1,當P點在線段AB上時,求PE+PF的值.
(2)如圖2,當P點在線段AB的延長線上時,求PE﹣PF的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

11·西寧)(本小題滿分8分)如圖12 ,矩形ABCD的對角線相交于點ODECA,AEBD

(1)求證:四邊形AODE是菱形;
(2).若將題設中“矩形ABCD”這一條件改為“菱形ABCD”,
其余條件不變,則四邊形AODE_  ▲  

查看答案和解析>>

同步練習冊答案
<small id="tdoww"></small>
  • <tbody id="tdoww"><strike id="tdoww"><meter id="tdoww"></meter></strike></tbody>
  • <small id="tdoww"></small><small id="tdoww"></small>
    <em id="tdoww"></em>