【題目】如圖,矩形ABCD中,P是邊AD上的一動點,連接BP、CP,過點B作射線交線段CP的延長線于點E,交AD邊于點M,且使得∠ABE=∠CBP,如果AB=2,BC=5,AP=x,PM=y.
(1)說明△ABM∽△APB;并求出y關于x的函數(shù)關系式,寫出自變量x的取值范圍;
(2)當AP=4時,求sin∠EBP的值;
(3)如果△EBC是以∠EBC為底角的等腰三角形,求AP的長.
【答案】(1)證明見解析;y=x﹣;2<x≤5;(2);(3)4或.
【解析】
(1)易證△ABM∽△APB,然后根據(jù)相似三角形的性質(zhì)就可得到y關于x的函數(shù)解析式,由P是邊AD上的一動點可得0≤x≤5,再由y>0就可求出該函數(shù)的自變量取值范圍;
(2)過點M作MH⊥BP于H,由AP=x=4可求出MP、AM、BM、BP,然后根據(jù)面積法可求出MH,從而可求出BH,就可求出∠EBP的正弦值;
(3)可分EB=EC和CB=CE兩種情況討論:①當EB=EC時,可證到△AMB≌△DPC,則有AM=DP,從而有x-y=5-x,即y=2x-5,代入(1)中函數(shù)解析式就可求出x的值;②當CB=CE時,可得到PC=EC-EP=BC-MP=5-y,在Rt△DPC中根據(jù)勾股定理可得到x與y的關系,然后結合y關于x的函數(shù)解析式,就可求出x的值.
解:(1)∵四邊形ABCD是矩形
∴AD∥BC
∴∠CBP=∠BPA
∵∠ABE=∠CBP,
又∠A=∠A,
∴△ABM∽△APB
由△ABM∽△APB,得,
∴,
∴y=x﹣.
∵P是邊AD上的一動點,
∴0≤x≤5.
∵y>0,
∴x﹣>0,
∴x>2,
∴x的取值范圍為2<x≤5;
(2)過點M作MH⊥BP于H,如圖.
∵AP=x=4,∴y=x﹣=3,
∴MP=3,AM=1,
∴BM=,BP=.
∵S△BMP=MPAB=BPMH,
∴MH=,
∴sin∠EBP=;
(3)①若EB=EC,則有∠EBC=∠ECB.
可證△AMB≌△DPC,
∴AM=DP,
∴x﹣y=5﹣x,
∴y=2x﹣5,
∴x﹣=2x﹣5,
解得:x1=1,x2=4.
∵2<x≤5,
∴AP=x=4;
②若CE=CB,則∠EBC=∠E.
∵AD∥BC,
∴∠EMP=∠EBC=∠E,
∴PE=PM=y,
∴PC=EC﹣EP=5﹣y,
∴在Rt△DPC中,(5﹣y)2﹣(5﹣x)2=22,
∴3x2﹣10x﹣4=0,
解得:x1=,x2=(舍去).
∴AP=x=.
終上所述:AP的值為4或.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點在的直徑延長線上,點為上,過作,與的延長線相交于,為的切線,,.
(1)求證:;
(2)求的長;
(3)若的平分線與交于點,為的內(nèi)心,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了備戰(zhàn)初三物理、化學實驗操作考試,某校對初三學生進行了模擬訓練,物理、化學各有3個不同的操作實驗題目,物理題目用序號①、②、③表示,化學題目用字母a、b、c表示,測試時每名學生每科只操作一個實驗,實驗的題目由學生抽簽確定,第一次抽簽確定物理實驗題目,第二次抽簽確定化學實驗題目.
(1)小李同學抽到物理實驗題目①這是一個 事件(填“必然”、“不可能”或“隨機”).
(2)小張同學對物理的①、②和化學的c號實驗準備得較好,請用畫樹形圖(或列表)的方法,求他同時抽到兩科都準備得較好的實驗題目的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=ax2+bx﹣3與x軸交于A,B兩點,與y軸交于點C,且OB=OC=3OA,求拋物線的解析式( )
A.y=x2﹣2x﹣3B.y=x2﹣2x+3C.y=x2﹣2x﹣4D.y=x2﹣2x﹣5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O為原點,⊙O的半徑為1,點A的坐標為(2,0),動點B在⊙O上,以AB為邊作等邊△ABC(順時針),則線段OC的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=x+6與x軸、y軸分別交于A,B兩點,將直線l1沿著y軸正方向平移一段距離得到直線l2交y軸于點M,且l1與l2之間的距離為3,點C(x,y)是直線11上的一個動點,過點C作AB的垂線CD交y軸于點D.
(1)求直線l2的解析式;
(2)當C運動到什么位置時,△AOD的面積為21,求出此時點C的坐標;
(3)連接AM,將△ABM繞著點M旋轉得到△A'B'M',在平面內(nèi)是否存在一點N.使四邊形AMA'N為矩形?若存在,求出點N的坐標:若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=x2在第一象限內(nèi)經(jīng)過的整數(shù)點(橫坐標,縱坐標都為整數(shù)的點)依次為A1,A2,A3,…An,…,將拋物線y=x2沿直線L:y=x向上平移,得一系列拋物線,且滿足下列條件:
①拋物線的頂點M1,M2,M3,…Mn,…都在直線L:y=x上;
②拋物線依次經(jīng)過點A1,A2,A3…An,….
則M2016頂點的坐標為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點E為△ABC的外接圓⊙O上一點,OE⊥BC于點D,連接AE并延長至點F,使∠FBC=∠BAC,
(1)求證:直線BF是⊙O的切線;
(2)若點D為OE中點,過點B作BG⊥AF于點G,連接DG,⊙O的半徑為,AC=5.
①求∠BAC的度數(shù);
②求線段DG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將△OAB繞O點逆時針旋轉60°得到△OCD,若OA=4,∠AOB=35°,則下列結論錯誤的是( )
A. ∠BDO=60° B. ∠BOC=25° C. OC=4 D. BD=4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com