【題目】如圖,某小區(qū)A棟樓在B棟樓的南側(cè),兩樓高度均為90m,樓間距為MN.春分日正午,太陽光線與水平面所成的角為55.7°,A棟樓在B棟樓墻面上的影高為DM;冬至日正午,太陽光線與水平面所成的角為30°,A棟樓在B棟樓墻面上的影高為CM.已知CD44.5m

(1)求樓間距MN;

(2)B號樓共30層,每層高均為3m,則點C位于第幾層?(參考數(shù)據(jù):tan30°≈0.58sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47)

【答案】(1)50;(2)21

【解析】

(1)根據(jù)三角函數(shù)的性質(zhì),設(shè)PE=x,在直角三角形PCE中表示出CE,利用CE=DF=MN,在直角三角形PDF中用三角函數(shù)即可求出結(jié)論,2)根據(jù)上一問求出PE的長,進(jìn)而求出CM的長,利用每層樓高3米即可解題.

解:(1)過點C作CE⊥AN與E, 過點DDF⊥AN與F,

設(shè)AE=x,

∵∠C=30°,

∴CE=1.72x,EF=44.5,

在△PDF中,DF==50,

(2)由(1)知,CE=50,PE=CEtan30°=500.58=29,

∴CM=61,

∵每層高均為3m,

∴點C位于第21.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程

當(dāng)m取何值時,這個方程有兩個不相等的實根?

若方程的兩根都是正數(shù),求m的取值范圍;

設(shè)是這個方程的兩個實數(shù)根,且,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙三個盒子中分別裝有除顏色外都相同的小球,甲盒中裝有兩個球,分別為一個紅球和一個綠球;乙盒中裝有三個球,分別為兩個綠球和一個紅球;丙盒中裝有兩個球,分別為一個紅球和一個綠球,從三個盒子中各隨機(jī)取出一個小球

(1)請畫樹狀圖,列舉所有可能出現(xiàn)的結(jié)果

(2)請直接寫出事件取出至少一個紅球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以△ABC的邊ABAC為邊分別向外作正方形ABDE和正方形ACFG,連接EG,MEG的中點,連接AM

1)如圖1,∠BAC=90°,試判斷AMBC關(guān)系?

2)如圖2,∠BAC≠90°,圖1中的結(jié)論是否成立?若不成立,說明理由;若成立,給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工人打算用不銹鋼條加工一個面積為0.8平方米的矩形模具.假設(shè)模具的長與寬分別為x米和y米.

(1)你能寫出y與x之間的函數(shù)解析式嗎?

(2)變量y與x是什么函數(shù)關(guān)系?

(3)已知這種不銹鋼條每米6元,若想使模具的長比寬多1.6米,則加工這個模具共需花多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016年3月國際風(fēng)箏節(jié)期間,王大伯決定銷售一批風(fēng)箏,經(jīng)市場調(diào)研:蝙蝠型風(fēng)箏進(jìn)價每個為10元,當(dāng)售價每個為12元時,銷售量為180個,若售價每提高1元,銷售量就會減少10個,請回答以下問題:

(1)用表達(dá)式表示蝙蝠型風(fēng)箏銷售量y(個)與售價x(元)之間的函數(shù)關(guān)系(12≤x≤30);

(2)王大伯為了讓利給顧客,并同時獲得840元利潤,售價應(yīng)定為多少?

(3)當(dāng)售價定為多少時,王大伯獲得利潤W最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為推進(jìn)傳統(tǒng)文化進(jìn)校園活動,某校準(zhǔn)備成立經(jīng)典誦讀”、“傳統(tǒng)禮儀”、“民族器樂地方戲曲等四個課外活動小組.學(xué)生報名情況如圖(每人只能選擇一個小組):

(1)報名參加民族器樂課外活動小組的學(xué)生數(shù)占所有報名人數(shù)的30%,報名參加課外活動小組的學(xué)生共有______人,并將條形統(tǒng)計圖補(bǔ)充完整;

(2)根據(jù)報名情況,學(xué)校決定從報名地方戲曲小組的甲、乙、丙三人中隨機(jī)調(diào)整兩人到經(jīng)典誦讀小組,甲、乙恰好都被調(diào)整到經(jīng)典誦讀小組的概率是多少?請用列表或畫樹狀圖的方法說明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為4,EBC邊的中點,點P在射線AD上,過PPF⊥AEF.

(1)求證:△PFA∽△ABE;

(2)當(dāng)點P在射線AD上運動時,設(shè)PA=x,是否存在實數(shù)x,使以P,F(xiàn),E為頂點的三角形也與△ABE相似?若存在,請求出x的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在矩形ABCD中,EF經(jīng)過對角線BD的中點O,并交AD,BC于點E,F

1)求證:△BOF≌△DOE

2)若AB=4cm,AD=5cm,求四邊形ABFE的面積.

查看答案和解析>>

同步練習(xí)冊答案