【題目】如圖,在平面直角坐標(biāo)系中,A(﹣1,5)、B(﹣1,0)、C(﹣4,3).
(1)請(qǐng)畫出△ABC關(guān)于y軸對(duì)稱的△DEF(其中D、E、F分別是A、B、C的對(duì)應(yīng)點(diǎn)).
(2)直接寫出(1)中F點(diǎn)的坐標(biāo)為 .
(3)若直線l經(jīng)過(guò)點(diǎn)(0,﹣2)且與x軸平行,則點(diǎn)C關(guān)于直線l的對(duì)稱點(diǎn)的坐標(biāo)為 .
(4)在y軸上存在一點(diǎn)P,使PC﹣PB最大,則點(diǎn)P的坐標(biāo)為 .
(5)第一象限有一點(diǎn)M(4,2),在x軸上找一點(diǎn)Q使CQ+MQ最短,畫出最短路徑,保留作圖痕跡.
【答案】(1)見(jiàn)解析;(2)點(diǎn)F的坐標(biāo)(4,3);(3)點(diǎn)C關(guān)于直線l的對(duì)稱點(diǎn)C′(﹣4,﹣9);(4)(0,﹣1);(5)見(jiàn)解析.
【解析】
(1)分別作出A,B,C的對(duì)應(yīng)點(diǎn)D,E,F即可.
(2)根據(jù)點(diǎn)F的位置寫出坐標(biāo)即可.
(3)根據(jù)對(duì)稱的性質(zhì)解決問(wèn)題即可.
(4)延長(zhǎng)CB交y軸于點(diǎn)P,此時(shí)PC﹣PB的值最大.
(5)作點(diǎn)M關(guān)于x軸的對(duì)稱點(diǎn)M′,連接CM′交x軸于點(diǎn)Q,連接QM,此時(shí)QM+QC的值最。
(1)如圖,△DEF即為所求.
(2)點(diǎn)F的坐標(biāo)(4,3).
故答案為(4,3).
(3)∵C(﹣4,3),直線l為y=﹣2,
∴點(diǎn)C關(guān)于直線l的對(duì)稱點(diǎn)C′(﹣4,﹣9).
(4)延長(zhǎng)CB交y軸于點(diǎn)P,此時(shí)PC﹣PB的值最大,P(0,﹣1),
故答案為(0,﹣1).
(5)作點(diǎn)M關(guān)于x軸的對(duì)稱點(diǎn)M′,連接CM′交x軸于點(diǎn)Q,連接QM,此時(shí)QM+QC的值最。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等邊三角形ABC中,點(diǎn)D是BC的中點(diǎn),點(diǎn)E、F分別是邊AB、AC(含線段AB、AC的端點(diǎn))上的動(dòng)點(diǎn),且∠EDF=120°,小明和小慧對(duì)這個(gè)圖形展開如下研究:
問(wèn)題初探:(1)如圖1,小明發(fā)現(xiàn):當(dāng)∠DEB=90°時(shí),BE+CF=nAB,則n的值為 ;
問(wèn)題再探:(2)如圖2,在點(diǎn)E、F的運(yùn)動(dòng)過(guò)程中,小慧發(fā)現(xiàn)兩個(gè)有趣的結(jié)論:
①DE始終等于DF;②BE與CF的和始終不變;請(qǐng)你選擇其中一個(gè)結(jié)論加以證明.
成果運(yùn)用:(3)若邊長(zhǎng)AB=8,在點(diǎn)E、F的運(yùn)動(dòng)過(guò)程中,記四邊形DEAF的周長(zhǎng)為L,L=DE+EA+AF+FD,則周長(zhǎng)L 取最大值和最小值時(shí)E點(diǎn)的位置?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,△ABC中,∠C=90°.
(1)若AC=4,BC=3,AE=,DE⊥AC.且DE=DB,求AD的長(zhǎng);
(2)請(qǐng)你用沒(méi)有刻度的直尺和圓規(guī),在線段AB上找一點(diǎn)F,使得點(diǎn)F到邊AC的距離等于FB(注:不寫作法,保留作圖痕跡,對(duì)圖中涉及到的點(diǎn)的用字母進(jìn)行標(biāo)注)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在等腰中,,點(diǎn)為邊上一點(diǎn)(不與點(diǎn)、點(diǎn)重合),,垂足為,交于點(diǎn).
(1)請(qǐng)猜想與之間的數(shù)量關(guān)系,并證明;
(2)若點(diǎn)為邊延長(zhǎng)線上一點(diǎn),,垂足為,交延長(zhǎng)線于點(diǎn),請(qǐng)?jiān)趫D2中畫出圖形,并判斷(1)中的結(jié)論是否成立.若成立,請(qǐng)證明;若不成立,請(qǐng)寫出你的猜想并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知當(dāng),二次函數(shù)的值相等且大于零,若,,三點(diǎn)都在此函數(shù)的圖象上,則,,的大小關(guān)系為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,E是AB的中點(diǎn),連接DE并延長(zhǎng)交CB的延長(zhǎng)線于點(diǎn)F,點(diǎn)M在BC邊上,且∠MDF=∠ADF。
(1)求證:△ADE≌△BFE;
(2)如果FM=CM,求證:EM垂直平分DF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD,CE相交于F.
求證:AF平分∠BAC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2分)矩形的一內(nèi)角平分線把矩形的一條邊分成3和5兩部分,則該矩形的周長(zhǎng)是()
A. 16 B. 22或16 C. 26 D. 22或26
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,點(diǎn)是邊上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)作直線,交的平分線于點(diǎn),交的外角平分線于點(diǎn).
判斷與的大小關(guān)系?并說(shuō)明理由;
當(dāng)點(diǎn)運(yùn)動(dòng)到何處時(shí),四邊形是矩形?并說(shuō)出你的理由;
在的條件下,當(dāng)滿足什么條件時(shí),四邊形是正方形.直接寫出答案,不需說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com