a,b,c均為不等于1的正數(shù),且a-2=b3=c6,則abc的值為( 。
A、3
B、2
C、1
D、
1
2
分析:先根據(jù)題意求出b=c2,
1
a2
=b3,然后求出a2b3=1,從而求出a2b3=a2b2b=a2b2c2=1,然后得出abc的值.
解答:解:∵a-2=b3=c6,
∴b=c2
1
a2
=b3,
∴a2b3=1,
∴a2b3=a2b2b=a2b2c2=1,
∴abc=1.
故選C.
點(diǎn)評(píng):本題主要考查了冪的乘方,積的乘方,理清指數(shù)的變化是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知a,b,c均為不等于1的正數(shù),且a3=b4=c12,則
bca
的值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,要設(shè)計(jì)一個(gè)等腰梯形的花壇,花壇上底長(zhǎng)12米,下底長(zhǎng)18米,高8米.
(1)求梯形的中位線(xiàn)的長(zhǎng);
(2)在梯形兩腰中點(diǎn)連線(xiàn)(虛線(xiàn))處有一條橫向通道,上下底之間有兩條縱向通道,各條通道的寬度均為x米.
①若通道的總面積等于42平方米,求通道的寬;
②按要求通道的寬不能超過(guò)1米,且修建三條通道應(yīng)付的工資合計(jì)為25
3
x元.花壇其余部分應(yīng)付的工資為每平方米
3
元,當(dāng)通道的寬度為多少米時(shí),所建花壇應(yīng)付的總工資最少?最少工資是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

在一節(jié)數(shù)學(xué)實(shí)踐活動(dòng)課上,呂老師手拿著三個(gè)正方形硬紙板和幾個(gè)不同的圓形的盤(pán)子,他向同學(xué)們提出了這樣一個(gè)問(wèn)題:已知手中圓盤(pán)的直徑為13cm,手中的三個(gè)正方形硬紙板的邊長(zhǎng)均為5cm,若將三個(gè)正方形紙板不重疊地放在桌面上,能否用這個(gè)圓盤(pán)將其蓋?問(wèn)題提出后,同學(xué)們七嘴八舌,經(jīng)過(guò)討論,大家得出了一致性的結(jié)論是:本題實(shí)際上是求在不同情況下將三個(gè)正方形硬紙板無(wú)重疊地適當(dāng)放置,圓盤(pán)能蓋住時(shí)的最小直徑.然后將各種情形下的直徑值與13cm進(jìn)行比較,若小于或等于13cm就能蓋住,反之,則不能蓋。畢卫蠋煱淹瑢W(xué)們探索性畫(huà)出的四類(lèi)圖形畫(huà)在黑板上,如下圖所示.
精英家教網(wǎng)
(1)通過(guò)計(jì)算,在①中圓盤(pán)剛好能蓋住正方形紙板的最小直徑應(yīng)為
 
cm.(填準(zhǔn)確數(shù))
(2)圖②能蓋住三個(gè)正方形硬紙板所需的圓盤(pán)最小直徑為
 
cm圖③能蓋住三個(gè)正方形硬紙板所需的圓盤(pán)最小直徑為
 
cm?(結(jié)果填準(zhǔn)確數(shù))
(3)按④中的放置,考慮到圖形的軸對(duì)稱(chēng)性,當(dāng)圓心O落在GH邊上時(shí),此時(shí)圓盤(pán)的直徑最。(qǐng)你寫(xiě)出該種情況下求圓盤(pán)最小直徑的過(guò)程.(計(jì)算中可能用到的數(shù)據(jù),為了計(jì)算方便,本問(wèn)在計(jì)算過(guò)程中,根據(jù)實(shí)際情況最后的結(jié)果可對(duì)個(gè)別數(shù)據(jù)取整數(shù))
(4)由(1)(2)(3)的計(jì)算可知:A.該圓盤(pán)能蓋住三個(gè)正方形硬紙板,B.該圓盤(pán)不能蓋住三個(gè)正方形硬紙板.你的結(jié)論是
 
.(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

a,b,c均為不等于1的正數(shù),且a-2=b3=c6,則abc的值為


  1. A.
    3
  2. B.
    2
  3. C.
    1
  4. D.
    數(shù)學(xué)公式

查看答案和解析>>

同步練習(xí)冊(cè)答案